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About these notes

These notes cover the key course content for the Level 5 Microphone and Loud-

speaker Design module undertaken as part of the University of Salford’s under-

graduate degree in Acoustics and Audio Engineering.

Please be aware that these notes will be updated annually. If you have any

comments, queries or corrections please email me at:

j.w.r.meggitt1@salford.ac.uk.



Part I

Loudspeaker Design



List of symbols

Many of the symbols used in this module are shared between quantities in different

domains (e.g. M can denote both mechanical and acoustic mass). For this

reason, where confusion may arise, subscripts are used to specify domains and

differentiate variables. When dealing with a single domain, subscripts may be

omitted for clarity. Variables that make only minor appearances are not included

in the table below, though there meaning should be clear from the text.

Symbol Meaning Units

General:

f Frequency Hertz - [Hz]

ω Radian frequency Radians per second [Rad/s]

t Time Seconds - [s]

j Imaginary unit [-]

�∗ Complex conjugate [-]

<(�) Real part [-]

=(�) Imaginary part [-]

Electrical domain:

V Voltage Volts - [V]

i Current Amps - [A]

Z Impedance Ohms - [Ω]

L Inductance Henry - [H]

C Capacitance Farads - [F]

R Resistance [Ω]

G Conductance Siemens - [S]

q Charge Coulombs [C]

B Flux density Tesla - [T]

l Length of voice coil Meters - [m]

Q Q-factor [-]

H Transfer function Various - [-]

Mechanical domain:

F Force Newtons - Newtons - [N]

x Displacement Meters - [m]

u Velocity [m/s]

a Acceleration [m/s2]

Z Impedance [Nm/s]

Y Mobility [s/Nm]

M Mass [kg]

C Compliance [m/N]

k Stiffness [N/m]
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R Damping factor [Ns/m]

X Reactance [Ns/m]

P Power [J]

Acoustic domain:

p Pressure [Pa]

U Volume velocity Volume per second - [m3/s]

M Mass [??]

C Compliance [??]

R Damping factor [??]

SD Diaphragm area [m2]

ρ Density of air [??]

c Speed of sound [m/s]

V Volume [m3]

a Radius [m]

k Wave number [??]

Subscripts:

�0 Amplitude [-]

�E Electrical domain [-]

�M Mechanical domain [-]

�A Acoustic domain [-]

�T Total (inc. A, M , E) [-]

��D Diaphragm only [-]

��S Diaphragm (inc. air load) [-]

��T Diaphragm + enclosure [-]

��f Diaphragm front [-]

��b Diaphragm rear [-]

��V Vent quantity [-]



1 Introduction

An audio signal can be readily stored, retrieved, processed, and broadcast using

electronic means. However, it must be turned into an acoustic signal in order for

it to be audible. The transformation of an electronic signal into audible acoustic

waves is called electroacoustic transduction. A loudspeaker is such an electroa-

coustic transducer. The conversion from an acoustic wave to a stored audio signal

is also known as electroacoustic transduction; in this case the transformation of

information from the acoustic domain into an electronic representation is achieved

using devices which we know as microphones.

Electronic signal Coil: Electrical Cone: Mechanical
Air (in and around cab-

inet): Acoustical

Acoustic

signal

Figure 1.1: Operation of a dynamic loudspeaker.

Conversion from an acoustic wave to a varying electrical signal (or visa-versa) is

not usually something that happens directly. In the case of a microphone, acous-

tic pressure variations are first translated into the movement of a mechanical

object (the microphone diaphragm) before conversion to an electrical signal. In a

loudspeaker, similarly the electrical signal is first transformed into the mechanical

motion of the loudspeaker diaphragm before the motion of this physical compo-

nent then impresses itself upon the surrounding air, causing acoustic disturbances.

In order to fully appreciate electroacoustic transduction, we should understand the

properties and limitations of both aspects; electro-mechanical transduction and

mechano-acoustic transduction.

Loudspeakers and microphone are very similar in their operation; in fact, some

loudspeakers can be used as effective microphones and vice-versa (a woofer can

make an effective microphone for a kick drum!). Many of the design consideration

of microphones and loudspeakers are similar. However, one type of loudspeaker

dominates (the electrodynamic loudspeaker) while for microphones more types

are commonly in use (electrodynamic/electrostatic). Therefore, in microphone

design there are arguably more parameters to consider. This module will start

with loudspeaker design, before moving onto microphones, though many of the
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same principals apply. Figure 1.1 and figure 1.2 illustrates the three domains we

will consider (electrical, mechanical and acoustic) in the study of loudspeaker and

microphone design. How energy is converted from domain to another has a big

impact in the design of transducers.

Electronic signal Coil: Electrical Cone: Mechanical
Air (in and around mi-

crophone): Acoustical

Acoustic

signal

Figure 1.2: Operation of a dynamic microphone

1.1 Loudspeaker Anatomy and Operation

Electrodynamic loudspeakers were first introduced in the 1925 by Rice and Kel-

logg: https://cdm16694.contentdm.oclc.org/digital/collection/p16694coll20/

id/5690/. These are often referred to as simply dynamic loudspeakers or moving-

coil loudspeakers. These are probably the most popular kind of loudspeaker and

will be primary focus of this module. Electrodynamic refers to the type of electro-

mechanical transduction that is employed. A force needs to be applied to move

the diaphragm. This force is generated by applying an electrical current to a wire

coil (the voice coil), placed within a static magnetic field. When electrical current

passes through a conductor in a magnetic field, it produces a force (the Lorentz

force) which varies with the current applied according to the relationship,

F = Bli (1.1)

where B is the magnetic flux density of the magnet, l is the total length of wire

in the coil (not the physical length of the wrapped-up coil) and i is the current

through the coil. In most cases in this module we will refer only to the force

product Bl (motor strength) as this is only parameter of importance.

Force, F = Bli

Velocity, u = V
Rl

Voice coil

current (i)

Voice coil voltage (V )
Figure 1.3: Operation of an electro-dynamic
transducer.

However, an electromagnetic works both as a motor and a generator; any rela-

tive motion of the coil and magnetic field will generate a voltage at the terminals.
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This is known as the back-emf (electromotive force) and represents a feedback

system which makes the analysis of electrodynamic loudspeakers a little more

complicated. The voltage (V ) generated in a coil with velocity u is related by the

following;

V = Blu (1.2)

The coil and magnet assembly are known as the motor structure of the loud-

speaker. Figure 1.4 shows a schematic of a typical modern dynamic loudspeaker.

The principal of operation has not changed since introduced in the 1920s! The

cone, connected to the voice coil, moves in and out creating fluctuations of high

and low air pressure.

N NS S

Dust cap/dome

Former

Diaphragm/cone

Chasis or basket

Surround

Suspension/spider

Pole peice (center pole)Rear plate

Magnet

Front plate (anular pole)

Voice-coil

Figure 1.4: Schematic of a typical dynamic loud-
speaker.

The diaphragm is attached to the basket at two points, the surround, and

the spider. Together these components are known as the suspension. The spider

and surround are flexible to allow for movement while preventing forms of motion

that would be detrimental to the performance of the driver. The suspension is

required to deliver a restoring force so that the driver returns to an equilibrium

position after being displaced. The spider is intended to allow axial but prevent

radial movement, by restricting the motion of the diaphragm to one axis (inwards

and outwards). This allows the coil to move freely along the axis of the magnet’s

core (or ’pole’) without touching the sides of the magnetic gap. The spider is

usually made from a material such as cotton while the surround is usually made of

rubber. Compromises of durability against sensitivity, or power handling against

precision of response, need to be made. The air behind the dust cap will be

compressed (and rarefied) when the driver is in operation and suitable vents need

to be present to allow the air to escape. Care needs to be employed in the design

of the vents to ensure that turbulence does not occur as air enters and escapes

causing noise known as chuffing.
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1.2 Modelling Approaches

To design a loudspeaker, we first need a theoretical model that can be used to

predict the operation of a loudspeaker given some design parameters. We can

then find the design parameters that give us a desired response. This will enable

us to build a simple computer model and avoid the expense of having to build

physical prototypes. Several modelling approaches are available.

1.2.1 Analytical Models

The dynamic behaviour of vibrating structures (e.g. loudspeakers) are often mod-

elled analytically by means of differential equations, i.e. equations that relate

some function with its derivatives. Although a powerful approach, the complex

and multi-domain nature of loudspeakers makes the analytical formulation of a

model very complicated, if not impossible.

1.2.2 Numerical Methods

The key issue with developing analytical models based on the differential equations

of an entire system is that it is very difficult (if not impossible) to specify the

necessary geometry/boundary conditions. One solution to this problem is to take

the complex system and break it down, or discretise it, into lots of much simpler

problems (so called ‘finite elements’) which we can then recombine later on. This

idea is at the heart of the Finite Element Method (you will have the option to

cover this in more detail in your final year).

Figure 1.5: Example finite element simulation of
a woofer.

Figure 1.6: Example finite element simulation of
a tweeter.

This sort of approach is referred to as a numerical approach, as opposed to say

an analytical or empirical approach. To do this we need to be able to assign system

properties like geometry, material characteristics, etc. The implementation of the

Finite Element Method is typically left to a computer program (e.g. COMSOL,

ANSYS, etc.).

However, the translation from initial design to a working FEM model is not

straight forward. It can be very difficult to set up the models correctly and take

a long time to get working properly. Also, coupling the 3 domains is not trivial

(need a multi-physics based FEM program), and things will almost certainly go

wrong before they go right! Nevertheless, loudspeaker manufactures will typically

use FEM for fine tuning designs, because when it works it is surprisingly good!

1.2.3 Lumped Parameter Modelling

By making a few simplifying assumptions we can take complex geometrical com-

ponents, like diaphragms, and lump them into a single equivalent element. This

enables us to simplify the problem tremendously. Unlike the FE approach, where

we would have loads of small elements, now we have 1 big lumped element.

So how do we use this approach to model a loudspeaker? Well, we can take

the diaphragm and model it as a single lumped mass element. We can take the

suspension and the spider and model their combined effect as a single lumped

spring element. Then finally we can collect together all of the damping in the

system into a lumped damper or dash-pot.



2 Lumped Parameter Modelling

To treat a component as a lumped element we have to assume that its only

independent variable is time, i.e. there is no spatial variation of any kind.

ucone = u(x, t) = u(t) (2.1)

Lets take as an example the diaphragm of a loudspeaker. Suppose we excite

the diaphragm with some force at a very high frequency. The wave length of this

excitation is so small that waves can actually travel up and down the cone and

cause standing waves (think room modes but on a cone!) This is what we call

cone breakup. Clearly we have some spatial distribution here, so cant use the

lumped element approach. Now instead, suppose we excite the diaphragm at a

f(t), λ << d f(t), λ >> d

Figure 2.1: Lumped element assumption for a
loudspeaker cone.

much lower frequency, so that we have a much longer wave length. In fact, the

wave length is greater than the size of our diaphragm! This means that we don’t

get any waves travelling up and down the cone. As a result, we have no spatial

distribution! And the cone moves uniformly at all points! In this case we can

treat the diaphragm as a lumped element.

For a microphone we have a similar assumption, instead of an applied force,

we say that there is no change in pressure or velocity across the diaphragm.

The main assumption of the lumped element approach is that there is no wave

behavior in our system. This is clearly a low frequency approximation. But it’s

a surprisingly good one! It helps us simplify our equations of motion, and it will

get us all the way through to the end of semester two!

2.1 Impedance: A Common Language

Key to the success of the lumped parameter approach is the use of a common

languuage across the three domains of interest (electrical, mechanical and acous-

tical). This common language is called impedance.
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Electrical impedance is the measure of the opposition that a circuit presents

to a current when a voltage is applied, and is defined as,

ZE =
V

i
(2.2)

Mechanical impedance is a measure of how much a structure resists motion

(velocity) when subjected to a force, and is defined as,

ZM =
F

u
(2.3)

Acoustic impedance is a measure of the opposition that a system presents to

the acoustic flow (Volume velocity) when subjected to acoustic pressure, and is

defined as,

ZA =
p

U
(2.4)

We will see later that by drawing an analogy between the electrical and mechan-

ical/acoustic variables, we can treat the mechanical and acoustical impedance as

if they were electrical, and in turn develop equivalent electrical circuits which

describe the dynamic behaviour of the physical systems.

2.2 Equivalent Circuits

The primary aim of this first semester is to develop equivalent electrical circuits

which accurately model the low frequency behaviour of dynamics loudspeakers.

An example of such a circuit is shown in figure 2.2.

Once an equivalent circuit is available, by applying AC circuit theory we will be

able to determine the frequency and efficiency characteristics of the loudspeaker.

By developing appropriate sound radiation models other characteristics such as

directivity will also be available.

Bl : 1 1 : S

Vin

i

RE LE

1
RM

MM CM
1
ZAb

1
ZAf U

Figure 2.2: An equivalent electrical circuit for a
dynamic loudspeaker

To build an equivalent circuit we must first develop electrical analogies for the

mechanical and acoustical domains. These will allow us to interpret the physical

domains as simple electric circuits. We will then couple these domains by adapting

the theory of ideal transformers to suit electro-mechanic and mechano-acoustic

transduction. Once coupled the equivalent circuit can be transformed into a

simple form, and used to investigate the effect of design modifications, e.g. the

introduction of a sealed or vented enclosure.



3 AC Circuit Theory

3.1 Electrical Quantities

Voltage V can be interpreted as a force that pushes electrons through some

conductor. The greater the voltage, the greater the push! The difference in

voltage between any two points in a circuit is called a potential difference, or

voltage drop.

Current i is the continuous and uniform flow of charge carrying electrons

through a conductor. The greater the current the greater the flow of electron-

s/charge!

Impedance Z is the capacity of a material to resist or oppose the flow of a

current. The greater the impedance, the harder it is for charge to flow!

Voltage, current and impedance are related through the following equation,

V = iZ. (3.1)

3.2 Kichhoff’s Current Law

Kirchhoff’s current law states that: ‘the total current or charge entering a junction

or node is exactly equal to the charge leaving the node as it has no other place to

go except to leave, as no charge is lost within the node’. This is a restatement

of the principle of the conservation of charge.

Mathematically this law can be written as,∑
n

in = 0 (3.2)

where in is the nth current flowing into (positive in) or out of (negative in) a

junction.

3.3 Kichhoff’s Voltage Law

Kirchhoff’s voltage law states that: ’in any closed loop network, the total voltage

around the loop is equal to the sum of all the voltage drops within the same loop’

(i.e. the algebraic sum of all voltages within the loop must be equal to zero).

This is a restatement of the principle of the conservation of energy.

Mathematically this law can be written as,∑
n

Vn = 0 (3.3)

where Vn is the nth voltage drop (negative Vn) or voltage source (positive Vn)

around the closed loop.
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3.4 Series and Parallel Elements

Using Kirchhoff’s laws, outlined above, it is possible to determine the total

impedance of a collection of arbitrary impedances. In general there exist two

types of component arrangement; series or parallel, although these arrangements

can be built up to form far more complex circuits.

3.4.1 Series Elements

A series arrangement of 3 arbitrary impedances is shown in figure 3.1. For a series

arrangement, the total impedance ZT presented by the circuit is, Excercise: Can you derive this equation using
Kirchhoff’s laws?

ZT = Z1 + Z2 + Z3. (3.4)

V

i

Z1

V1

Z2

V2

Z3V3

Figure 3.1: Three arbitrary impedances in series

3.4.2 Parallel Elements

A parallel arrangement of 3 arbitrary impedances is shown in figure 3.1. For a

parallel arrangement, the total impedance ZT presented by the circuit is, Exercise: Can you derive this equation using
Kirchhoff’s laws?

ZT =

(
1

Z1
+

1

Z2
+

1

Z3

)−1

. (3.5)

In the case that there are only 2 elements in parallel, equation 3.5 can be reduced

V

i

Z3V3

i3

Z1V1

i1

Z2V2

i2
Figure 3.2: Three arbitrary impedances in paral-
lel

to an alternate form called the product over sum rule, Exercise: Can you derive this equation from
equation 3.5, assuming only two elements?

ZT =
Z1Z2

Z1 + Z2
. (3.6)

Equation 3.6 is often far more convenient than equation 3.5, especially when

algebraic manipulations are required.

3.5 Detour: Complex Numbers

A complex number is a number that can be expressed in the form,



16 microphone and loudspeaker design

z = a+ jb (3.7)

where a and b are real numbers, and j is the solution of the equation x2 = −1

(often the letter i is used instead, however when dealing with currents, which are

also denoted by i, we use j for the imaginary unit).

Complex numbers are encountered when we use the Fourier transform to anal-

yse problems in the frequency domain. Quantities that we measure physically

(e.g. pressure, velocity, voltage, etc.) are clearly real, and have no imaginary

part. When transformed into the frequency domain via the Fourier transform

however, we get complex coefficients that describe the amplitude |z| and relative

phases θ of the signals constituent frequencies.

<

=

−1 − 1
2

1

−j

− j
2

j
2

j

φ

b = sinφ

a = cosφ

|z|

Figure 3.3: Complex amplitude of displacement
represents the magnitude and phase of a partic-
ular frequency

The representation of a complex number as a magnitude and phase angle is

referred to as the polar form,

z = |z|ejθ. (3.8)

The representation as given by equation 3.7 is referred to as the Cartesian form.

In both the Cartesian and polar form, a complex number is represented by a

vector that lies in what is called the complex plane (or an Argand diagram). This

is a 2D space where the x and y coordinates correspond to the real and imaginary

components of the complex number, respectively. An example is given in figure

3.3.

From the complex plane we can see that the length, or magnitude, of a complex

number is given simply by Pythagoras’ Theorem,

|z| =
√
a2 + b2. (3.9)

Similarly, the phase angle can be obtained as,

θ = tan−1

(
b

a

)
(3.10)

although care has to be take depending on which quadrant of the complex plane

the vector is residing (e.g. z = −a − jb will have the same phase angle as

z = a+ jb even though they point is different directions.).

A very important equation concerning complex numbers is that of Euler’s

formula,

ejθ = cos θ + j sin θ (3.11)

which relates the trigonometric functions sin and cos to the complex exponential

function ejθ, where θ is simply an appropriate phase angle given in radians.

Equation 3.11 is perhaps one of the most useful equations in all of physics

and engineering. It allows us to express periodic functions (such as sin and cos),

and by Fourier’s theorem any signal, in terms of complex exponentials. This can

greatly simplify the mathematics of many problems (e.g. it is much easier to take

the derivative of exponentials than trig functions!)

Listed below are some other useful identities when dealing with complex num-
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bers:

j2 = −1 (3.12)

1

j
= −j (3.13)

|z| = zz∗ (3.14)

<(z) =
z + z∗

2
(3.15)

=(z) =
z − z∗

2i
(3.16)

where z∗ = a− jb is the complex conjugate of z = a+ jb.

3.6 Electrical Impedance

Although there exist many others, in the lumped parameter/equivalent circuit

modelling of a loudspeaker there are 3 key electrical components: the resistor,

capacitor and inductor. It will turn out that by using just these three elements,

we can model the complete low frequency behaviour of a loudspeaker. To do so

we must first derive each of their electrical impedances,

ZE =
V

i
. (3.17)

3.6.1 Resistors

Resistors are the simplest electrical components available. There purpose is to

limit the flow of current by presenting a resistance to its motion. The circuit

diagram representation of a resistor is shown in figure 3.4. An ideal resistor has

an impedance that is independent of frequency and characterised by its resistance

R,

ZR = R. (3.18)

The impedance of a resistor is sometimes denoted by its reciprocal value, i.e. the

conductance

G =
1

R
. (3.19)

i

V
Figure 3.4: Symbol for electrical resistor

A resistor’s opposition to the flow of current generates heat, i.e. it converts

electrical energy into heat energy.

3.6.2 Capacitors

A capacitor is a passive electrical component. Unlike a resistor however, a capac-

itor has the ability, or the capacity, to store energy. It does this in the form of

an electrical charge, which creates a potential different across its two ends. The

circuit diagram representation of a capacitor is shown in figure 3.5.

The capacitance C of a capacitor is what relates the voltage drop across its

two ends to the charge q,

q = CV. (3.20)

Noting that current is defined as the time rate of change of charge.

i =
dq

dt
= C

dV

dt
(3.21)
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Now if we assume the element is being driven by a periodic current/voltage, such

that i = i0e
jωt and V = V0e

jωt, the above becomes,

i = C
dV

dt
= jωCV (3.22)

from which can find the impedance as

ZC =
1

jωC
. (3.23)

Equation 3.23 indicates that the electrical impedance of a capacitor is not only

inversely proportional to frequency, but complex. Note that complex impedance

is an indication of energy storage.

i

V
Figure 3.5: Symbol for electrical capacitor

Using the impedance derived above we can express the voltage across a ca-

pacitor in the form,

V0e
jωt =

−j
ωC

i0e
jωt (3.24)

where the identity 1
j = −j has been used. Noting that j = ej

π
2 we can rewrite

this as,

V0e
jωt =

1

ωC
i0e

jωte−j
π
2 =

1

ωC
i0e

j(ωt−π2 ). (3.25)

According to equation 3.25 the current through a capacitor lags behind the voltage

by θ = −π2 .

3.6.3 Inductors

An inductor is passive electrical component consisting of a coil of wire which is

designed to take advantage of the relationship between magnetism and electricity

as a result of an electric current passing through the coil. Like a capacitor, an

inductor can store energy. Unlike a capacitor however, an inductor stores this

energy as a magnetic field, as opposed to an electrical one. The circuit diagram

representation of an inductor is shown in figure 3.6.

i

V
Figure 3.6: Symbol for electrical inductor

The inductance L of an inductor relates the time rate of change of current

through the element to the voltage drop across its terminals,

V = L
di

dt
(3.26)

Again, if we assume the element is being driven by a periodic current/voltage,

such that i = i0e
jωt and V = V0e

jωt, the above becomes,

V = jωLi (3.27)

from which we obtain the impedance as,

ZL = jωL. (3.28)

Equation 3.28 indicates that the electrical impedance of a capacitor is not only

proportional to frequency, but complex (i.e. the inductor stores energy).

100 101 102 103 104
100

101

102

103

Frequency [Hz]

|Z
|

Figure 3.7: Impedance vs. frequency character-
istics of a resistor (green), capacitor (blue), and
inductor (red).

Using the impedance derived above we can express the voltage across an in-

ductor in the form,

V0e
jωt = jωLi0e

jωt. (3.29)

Again, noting that j = ej
π
2 we can rewrite this as,

V0e
jωt = ωLi0e

jωtej
π
2 = ωLi0e

j(ωt+π
2 ). (3.30)

According to equation 3.30 the current through an inductor leads the voltage by

θ = π
2 .
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3.7 Divider Circuits

By arranging collections of electrical components we can create circuits that ma-

nipulate the voltage and/or current they are being driven with. Two common

types are shown in figure 3.8; the potential (voltage) divider and the current

divider.

Z1

Z2

Vin

Vout

(a) Potential divider

iin

Z3

i3

Z1

i1

Z2

i2

(b) Current divider

Figure 3.8: Voltage and current divider circuits

3.7.1 Voltage Divider

The voltage across the input terminal of a potential divider circuit depends on

the total impedance of the circuit,

Vin = iZT . (3.31)

From the above we can determine the total current flowing through the circuit

as,

i =
Vin
ZT

. (3.32)

The voltage across the output terminal of a potential divider circuit depends on

the impedance of the output component,

Vout = iZout. (3.33)

Note that the same current flows through both elements. Substituting in the

current we arrive at the equation for a voltage divider,

Vout =
Zout
ZT

Vin. (3.34)

In the special case that just two elements are present, and the output is being

taken over the second element, the output voltage is given by,

Vout =
Z2

Z1 + Z2
Vin. (3.35)

The transfer function (or gain) of this circuit is given by,

H =
Vout
Vin

=
Z2

Z1 + Z2
. (3.36)

3.7.2 Current Divider

The total current flowing through a current divider depends on the total impedance

of the circuit,

V = iTZT . (3.37)
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The current flowing though branch n is proportional to the impedance of that

branch,

in =
V

Zn
. (3.38)

Now by substituting in for the voltage we arrive at the equation for a current

divider,

in =
ZT
Zn

iT . (3.39)

In the special case that just two elements are present, and the output is taken

through the second branch, the output current is given by,

iout2 =
Z1

Z1 + Z2
iin. (3.40)

The transfer function (or gain) of this circuit is given by,

H =
iout2
iin

=
Z1

Z1 + Z2
. (3.41)

3.8 Filter Circuits

When analysing filter circuits we are typically interested in their transfer functions,

i.e. their gain response as a function of frequency. Depending on whether it is the

voltage of current that is of interest, the respective transfer functions is defined

as so,

HV =
Vout
Vin

(3.42)

Hi =
iout
iin

. (3.43)

In what follows we will analyse the voltage transfer function of 3 different filter

circuits, a series RC, RL and RLC.

3.8.1 RC Circuit

An AC voltage is applied to the circuit. Voltage across the resistor is vr = iR

with R being constant. Voltage across the capacitor is vc = 1
C

∫
i dt where C is

the constant capacitance.

Vin

i
R

C Vout

Figure 3.9: RC circuit

According to Kirchhoff’s law the applied voltage is the sum of the other volt-

ages in the circuit.

Vin = Vr + Vc (3.44)

We could form a differential equation and solve this equation. An easier way to

analyse this circuit is to treat it as a potential divider. If the output is taken

across the capacitor the output voltage Vc is,

Vout =
ZC

ZR + ZC
Vin. (3.45)
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Given what we know about the impedance of capacitors and resistors, we can

express the transfer function or gain (output divided by input) as,

Vout
Vin

=

1
jωC

R+ 1
jωC

. (3.46)

We can tidy this up by multiplying top and bottom by jωC,

Vout
Vin

=
1

jωRC + 1
. (3.47)

Equation 3.47 is the transfer function of our RC circuit. It is often helpful to look

at the magnitude of the gain,∣∣∣∣VoutVin

∣∣∣∣ =
1√

1 + (ωRC)
2
. (3.48)
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Figure 3.10: Gain response for an RC circuit,
output taken across capacitor. C = 1× 10−5 F,
R = 100 Ω, and fc = 1

2π
1
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= 159 Hz

To establish what sort of filter figure 3.9 represents we can look at the values

of its magnitude as frequency tends to the extreme limits of ω → 0 and ω →∞.

In the limit that ω → 0 (i.e. at low frequencies) we have that∣∣∣∣VoutVin

∣∣∣∣→ 1. (3.49)

In the limit that ω →∞ (i.e. at high frequencies) we have that,∣∣∣∣VoutVin

∣∣∣∣→ 0. (3.50)

The above trends are that of a low pass filter.

The cut-off frequency (ωc) of a filter is the frequency where the power output

is half that of the input. Half power implies that the gain is 1/
√

2 or -3dB,∣∣∣∣VoutVin

∣∣∣∣ =
1√
2

=
1√

1 + (ωcRC)
2
. (3.51)

Looking at 3.51 we can see this will happen when (ωRC)
2

= 1. Rearranging this,

we can see that,

ωc =
1

RC
(3.52)
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Having established an equation for the cut-off frequency ωc, equation 3.47 can

be parametrised using this relationship,

Vout
Vin

=
1

j ωωc + 1
. (3.53)

We can also get an understanding of the phase shift introduced by the circuit by

looking at 3.53. The gain at cut off (when ω = ωc) is

Vout
Vin

=
1

j + 1
. (3.54)

By multiplying the top and bottom of equation 3.54 by the complex conjugate of

the denominator we can obtain,

Vout
Vin

=
1

j + 1

1− j
1− j

=
1− j

2
=

1

2
− j

2
. (3.55)

The phase of the response can then be found by considering the Argand diagram.

Using trigonometry, the phase shift at cut-off is,

φ = tan−1

(
−0.5

0.5

)
→ −45◦. (3.56)

3.8.2 LR Circuit

An inductor in series with a resistor forms another common electrical circuit.

Vin

i
R

L Vout

Figure 3.11: RL circuit

We can analyse this circuit in the same manner as above, using the voltage

divider rule. The voltage across the inductor is,

Vout = Vin ×
ZL

ZR + ZL
. (3.57)

Substituting in the impedance of the resistor and inductor, the circuit gain (output

divided by input) is given by,

Vout
Vin

=
jωL

R+ jωL
(3.58)

which simplifies to,
Vout
Vin

=
1

R
jωL + 1

(3.59)

Taking the magnitude of equation 3.59 we have,∣∣∣∣VoutVin

∣∣∣∣ =
1√(

R
ωL

)2
+ 1

. (3.60)

To establish what sort of filter figure 3.11 represents we can look at the values

of its magnitude as frequency tends to the extreme limits of ω → 0 and ω →∞.

In the limit that ω → 0 (i.e. at low frequencies) we have that,∣∣∣∣VoutVin

∣∣∣∣→ 0. (3.61)



ac circuit theory 23

In the limit that ω →∞ (i.e. at high frequencies) we have that,∣∣∣∣VoutVin

∣∣∣∣→ 1. (3.62)

The above trends are that of a high pass filter.
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Figure 3.12: Gain response for an RL circuit, out-
put taken across inductor. L = 1 × 10−1 H,
R = 100 Ω, and fc = 1

2π
R
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= 159 Hz

From equation 3.60 the cut-off frequency (i.e. when the gain is -3dB or 1/
√

2

will happen when
(
R
ωL

)2
= 1. Rearranging this we have that,

ωc =
R

L
. (3.63)

Using equation 3.63, equation 3.59 can be parametrised as so (noting that 1/j =

−j),
Vout
Vin

=
1

1− j ωcω
. (3.64)

We can also get an understanding of the phase shift introduced by the circuit by

looking at 3.64. The gain at cut off (when ω = ωc) is

Vout
Vin

=
1

1− j
. (3.65)

By multiplying the top and bottom of equation 3.65 by the complex conjugate of

the denominator we can obtain,

Vout
Vin

=
1

1− j
1 + j

1 + j
=

1 + j

2
=

1

2
+
j

2
. (3.66)

The phase of the response can then be found by considering the Argand diagram.

Using trigonometry, the phase shift at cut-off is,

φ = tan−1

(
0.5

0.5

)
→ 45◦. (3.67)

3.8.3 LCR Circuit

An inductor in series with a resistor and a capacitor forms a resonating circuit.

The total impedance this circuit is,

ZT = R+ jωL+
1

jωC
(3.68)
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Vin

i L
C

R Vout

Figure 3.13: LCR circuit

We can analyse this circuit in the same manner as above using the voltage divider

rule. The voltage across the resistor is,

Vout = Vin ×
ZR

ZR + ZL + ZC
. (3.69)

Substituting in the components’ impedance the gain (output divided by input) is

given by,
Vout
Vin

=
R

R+ jωL+ 1
jωC

. (3.70)

Dividing top and bottom by 1/R, the above simplifies to,

Vout
Vin

=
1

1 + jωL
R + 1

jωRC

. (3.71)

Taking the magnitude of equation 3.71 then yields,∣∣∣∣VoutVin

∣∣∣∣ =
1√

1 +
(
ωL
R −

1
ωRC

)2 . (3.72)
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Figure 3.14: Gain response for an LRC circuit,
output taken across resistor. C = 1 × 10−5 F,
L = 1×10−1 H, R = 100 Ω, and fr = 1
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To establish what sort of filter figure 3.13 represents we can look at the values

of its magnitude as frequency tends to the extreme limits of ω → 0 and ω →∞.

In the limit that ω → 0 (i.e. at low frequencies) we have that,∣∣∣∣VoutVin

∣∣∣∣→ 0 (Determined by capacitance). (3.73)

In the limit that ω →∞ (i.e. at high frequencies) we have that,∣∣∣∣VoutVin

∣∣∣∣→ 0 (Determined by inductance). (3.74)
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Unlike the RC and RL circuit considered above, there exists an intermediate

frequency (between 0 and ∞) where the gain is a maximum. This frequency

corresponds to when the reactance is zero,

jωL

R
− j

ωRC
= 0 or

(
ωL

R
− 1

ωRC

)
= 0 (3.75)

By rearranging equation 3.75 we can get an expression for the resonant frequency

of the circuit,

ωr =
1√
LC

(3.76)

The above trends are that of a band pass filter, whose centre frequency is ωr.

Plotting 3.71 we get the response in Figure 3.14. Here we can see that the

resonant peak has a particular width, or bandwidth (BW). The BW and resonant

frequency determine a useful parameter known as the Q-Factor or quality factor.

This is the ratio to the resonant frequency to the bandwidth. In this circuit the

bandwidth is BW = R/L hence,

Q =
ωr
BW

=
L

R
√
LC

=
1

R

√
L

C
. (3.77)

3.9 Norton and Thevenin’s Theorems

Norton’s and Thevenin’s theorems are a pair of very useful theorems for simplifying

AC circuits. They let allow us to introduce ideal voltage and current sources in

place of complex networks of electrical components. The two theorems are in

fact deeply related and are the dual of one another.

3.9.1 Norton’s Theorem

Norton’s theorem states that ‘any linear electrical network that contains only

voltage sources, current sources and impedances can be replaced by an ideal

current source ino in parallel with an appropriate impedance Zno’.

A

B

Norton

equivalent!

Ino

A

B

Zno

Figure 3.15: Norton equivalent circuit.

The procedure for applying Norton’s theorem is as follows:

- The equivalent current ino is the current obtained at terminals A B of the

network with terminals A B short circuited.

- The equivalent impedance Zno is the impedance obtained at terminals A B

of the network with all its voltage sources short circuited and all its current

sources open circuited.
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Consider the following example. An ideal voltage source VS is coupled to

a network of impedance elements, which themselves are connected to a load

impedance ZL. Norton’s Theorem can be used to replace the complex network

of impedances with a single equivalent impedance in parallel with an equivalent

Norton voltage source.

Vs

i
Z1

Z2

Z3

ZL

ino

ZLZno

Figure 3.16: Example Norton Theorem

To find the equivalent Norton current we begin by replacing the load impedance

with a short circuit. The total current running through the circuit is given by,

iT =
Vs
ZT

(3.78)

where ZT is the total impedance of the circuit,

ZT = Z1 +
Z2Z3

Z2 + Z3
. (3.79)

Vs

i
Z1

Z2

Z3

ino

Figure 3.17: Example - finding the Norton cur-
rent.

Using the current divider equation (3.40) the Norton current is given by,

ino = i3 =
Z2

Z2 + Z3
iT =

Z2

Z2 + Z3

Vs

Z1 + Z2Z3

Z2+Z3

. (3.80)

To find the equivalent Norton impedance we begin by replacing the voltage

source with a short circuit and removing the load impedance. The impedance of

the remaining circuit, across the load terminals, is obtained as,

Zno = Z3 +
Z1Z2

Z1 + Z2
. (3.81)

Z1

Z2

Z3

Zno

Figure 3.18: Example - finding the Norton
impedance.

Together equations 3.80 and 3.81, representing the Norton current and impedance,

respectively, provide an entirely equivalent source description (when arranged in

parallel) from the perspective of the load impedance, as the original network.
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3.9.2 Thevenin’s Theorem

Thevenin’s theorem states that ‘any linear electrical network that contains only

voltage sources, current sources and impedances can be replaced by an equivalent

combination of an ideal voltage source Vth in series with an appropriate impedance

Zth.’

A

B

Thevenin

equivalent!

Vth

Zth

A

B

Figure 3.19: Thevenin equivalent circuit.

The procedure for applying Thevenin’s theorem is as follows:

- The equivalent voltage Vth is the voltage obtained at terminals A B of the

network with terminals A B open circuited.

- The equivalent impedance Zth is the impedance that the circuit between ter-

minals A B would have if all ideal voltage sources (e.g. VS below) in the circuit

were replaced by a short circuit and all ideal current sources were replaced by

an open circuit , i.e. with the load removed (same as Norton’s Zno = Zth). Exercise: Can you find the Thevenin voltage and
impedance for figure 3.16?

3.10 Drop and Flow Quantities

We have covered 3 key electrical components: the resistor, capacitor and inductor.

For each component we have three generic quantities:

• The (voltage) drop across the (electrical) component

• The (current) flow through the (electrical) component

• The magnitude of the (electrical) component itself (resistance, capacitance,

inductance)

These generic quantities are not limited to electrical components however.

We can find analogous quantities for mechanical and acoustic systems! For a

mechanical system we have force (F ) and velocity (u). For an acoustic system

we have pressure (p) and volume velocity (U).

But which quantity is the drop and which is the flow? The choice is ours, and

it will depend on the problem at hand.



4 Mechanical Domain

For simple linear systems (like our loudspeaker systems) there are 3 main mechani-

cal components: mass elements, springs, and dampers or dashpots. By combining

these elements in different configurations we can create simple dynamic models

that represent the underlying physics of real structures.

Also, it turns out that the equations which govern these mechanical elements,

are very similar to those of the electrical components we have discussed so far.

This similarity will enable us to interpret these mechanical systems using an ’equiv-

alent electrical circuit’ approach.

4.1 Mechanical Impedance and Mobility

Let us begin by first recalling our definition of electrical impedance: it is the

voltage across a component divided by the current flowing through it, i.e. drop

divided by flow,

ZE =
V

i
. (4.1)

In a mechanical system we have a similar quantity which we call the mechanical

impedance. It is defined as force over velocity,

ZM =
F

u
. (4.2)

The mechanical impedance of a structure describes the opposition that the struc-

ture presents to an applied motion. Its reciprocal value, the mobility, is used to

describe the freedom of motion that a structure has,

YM =
u

F
. (4.3)

In what follows we will derive the impedance of the 3 main mechanical compo-

nents.

4.2 Mass Element

To derive the impedance of a mass element we start with Newton’s 2nd Law,

F = Ma (4.4)

where F is an externally applied force, M is the mass of the element, and a

its acceleration. We will assume that the applied force is periodic, and so takes

the form F = F0e
jωt. Clearly, the acceleration response will also be periodic,

a = a0e
jωt. MF

a

Figure 4.1: Mechanical mass element.
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Substituting the acceleration for the time derivative of the mass velocity, noting

that d
dte

jωt = jωejωt, leads to,

F = M
du

dt
= jωMu. (4.5)

The impedance is then obtained by dividing both sides by velocity,

ZM =
F

u
= jωM. (4.6)

Equation 4.6 indicates that the impedance of a mass element is not only propor-

tional to frequency, but complex.

4.3 Spring Element

To derive the impedance of a spring element we start with Hooke’s Law,

F = kx =
1

C
x (4.7)

which states that the force exerted by a spring is linearly related to its extension

x by the stiffness coefficient k. Although it is standard practice in most areas

of mechanics to use the stiffness k, it is convenient when designing loudspeaker

systems to use its reciprocal value, the compliance C = 1
k .

F
x

x = 0

Figure 4.2: Mechanical spring element.

We will again assume that the exerted force and spring’s extension are periodic,

such that F = F0e
jωt and x = x0e

jωt. Substituting the displacement for the

time integral of the spring velocity, noting that
∫
ejωt = 1

jω e
jωt, leads to,

F =
1

C

∫
udt =

1

jωC
u (4.8)

from which the spring element’s impedance can be found,

ZC =
F

u
=

1

jωC
. (4.9)

Equation 4.9 indicates that the impedance of a spring element is also complex,

but unlike the mass element, it is inversely proportional to frequency.

4.4 Damping Element

The damping mechanisms that occurs in real structures are often complex and a

rigours treatment beyond the scope of this module. However, for most practical

purposes (e.g. for the damping present in a loudspeaker systems) a reasonable

model can be obtained using a viscous damping element, as illustrated in figure

4.3. The governing equation for a damper of this sort is,

F = Ru (4.10)

where F is the reaction force exerted by the damper when driven at a velocity u.

The constant of proportionality R is called the damping coefficient.

F

u

u = 0

Figure 4.3: Mechanical damping element.

The impedance of a damping element is obtained straightforwardly as,

ZR =
F

u
= R. (4.11)

Equation 4.11 indicates that the impedance of a damping element is independent

of frequency, and real.
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4.5 Impedance Analogy

Those with a keen eye may have noticed that the electrical and mechanical

impedances we have derived are of a similar form... In particular: the impedance

of an electrical inductor is of the same form as the mechanical mass element,

ZEL = jωL ∼ ZMM = jωM (4.12)

the impedance of an electrical capacitor is of the same form as the mechanical

spring element,

ZEC =
1

jωC
∼ ZMS =

1

jωC
(4.13)

and the impedance of an electrical resistor is of the same form as the mechanical

damping element,

ZER = R ∼ ZMR = R. (4.14)

It is the above similarities that motivate the so called impedance analogy. Ac-

cording to the impedance analogy we can make the following equivalences:

F ↔ V (Drop) (4.15)

u↔ i (Flow) (4.16)

That is, we can treat mechanical force F as being equivalent to electrical voltage

V , and mechanical velocity as equivalent to electrical current i. By drawing

this particular analogy we preserve the analogy between mechanical and electrical

impedance,

ZM ↔ ZE (4.17)

but as we will see shortly, the topology of our problem is lost. i.e. mechanical

system is arranged differently to its analogous electrical circuit.

4.5.1 Mass on a Spring

To demonstrate the impedance analogy we will consider its application to a mass-

spring-damper system terminated by a rigid foundation (see figure 4.4).

Mass, M [kg]

Stiffness k [N/m] or

compliance C [m/N]
Damping R [Ns/m]

Input force F

Velocity u

u = 0

(assume rigid foundation)

Figure 4.4: Lumped parameter mechanical
model of a loudspeaker

Note that the spring and damper are both terminated at one end by a rigid

foundation (i.e. x2 = u2 = 0). Consequently, their respective velocities are

the same as that of the mass element, u. According to the impedance analogy,

this shared velocity is equivalent to an electrical current (see equation 4.16).
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Recalling that the electrical analogies for a mass, spring and damper are the

inductor, capacitor and resistor, we are interested in a circuit whose components

share the same current; this is achieved by the series circuit in figure 4.5.

F

u RM
CM

MM

Figure 4.5: Mechanical impedance analogue.

Note that the mechanical system in figure 4.4 is excited externally by an applied

force F . According to the impedance analogy F → V and so our equivalent circuit

is driven by an ideal voltage source.

The force across each mechanical component is now represented by a voltage

drop across the equivalent electrical component. According to Kirchhoff’s voltage

law we have that,

F − FR − FC − FM = 0 (4.18)

where FR, FC and FM are the force (voltage) drops across the damper, spring

and mass elements. Equation 4.18 is simply a statement of Newton’s second law;

the sum of forces equals mass times acceleration, FM = ma =
∑
F .

From the equivalent circuit in figure 4.5 we can determine the total electrical

impedance (which is analogous to the mechanical impedance according to the

impedance analogy) as,

ZE = jωMM +
1

jωCM
+RM = ZM . (4.19)

This is exactly what would be obtained if a more conventional analysis were

undertaken (e.g. a force balance to get a differential equation).

From the above it is clear that determining the velocity of the mass element

is equivalent to find the current in the equivalent circuit,

i =
V

ZE
← u =

F

jωMM + 1
jωCM

+RM
. (4.20)

In summary, the equivalent electrical circuit in figure 4.5 is entirely analogous to

the mechanical system shown in figure 4.4. However, it is not the only analogous

electrical circuit available.

4.6 Mobility Analogy

It is important to note that the idea of drawing an analogy between the electrical

and mechanical domain is nothing but acknowledging a symmetry in the form of

the underlying equations, and that more than one analogy may exist.

An alternative analogy is the so called ‘mobility’ analogy. The motivation

behind the impedance analogy was to draw an equivalence between mechanical

and electrical impedance. The mobility analogy instead draws an equivalence

between mechanical mobility and electrical impedance.

YM ↔ ZE or ZE ↔
1

ZM
(4.21)
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In doing so we assume following equivalences:

u↔ V (Drop) (4.22)

F ↔ i (Flow) (4.23)

According to this mobility analogy; the impedance of an electrical inductor is

of the same form as the mobility of a mechanical spring element,

ZEL = jωL ∼ YMS = jωC =
1

ZMS
(4.24)

the impedance of an electrical capacitor is of the same form as the mobility of a

mechanical mass element,

ZEC =
1

jωC
∼ YMM =

1

jωM
=

1

ZMM
(4.25)

and the impedance of an electrical resistor is of the same form as the mobility of

a mechanical damping element,

ZER = R ∼ YMR =
1

R
= G =

1

ZMR
(4.26)

It is the above similarities that motivate the so called mobility analogy.

Although the mobility analogy may seem less intuitive, it does makes some

physical sense, from a measurement perspective. To measure force we have to

interrupt the mechanical system – to measure current we have to interrupt the

electric circuit. Similarly, velocity can be measured without interruption – voltage

can be measured without interruption.

4.6.1 Mass on a Spring

To demonstrate the mobility analogy we will consider its application to the same

mass-spring-damper system as in figure 4.4.

According to the mobility analogy, the shared velocity of the mass, spring and

damper is equivalent to an electrical voltage (see equation 4.23). Recalling that

the electrical (mobility) analogies for a mass, spring and damper are the capacitor,

inductor and resistor, we are interested in a circuit whose components share the

same voltage; this is achieved by the parallel circuit in figure 4.6.

u

F

1/RMCM MM

Figure 4.6: Mechanical mobility analogue.

Note that the mechanical system in figure 4.4 is excited externally by an applied

force F . According to the mobility analogy F → i and so our equivalent circuit

is driven by an ideal current source.

The force across each mechanical component is now represented by the current

flowing through the equivalent electrical component. According to Kirchhoff’s

current law we have that,

F − FR − FC − FM = 0 (4.27)
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where FR, FC and FM are the force drops across (current flows through) the

damper, spring and mass elements. Equation 4.27 is again a statement of New-

ton’s second law.

From the equivalent circuit in figure 4.6 we can determine the total electri-

cal impedance (which is analogous to the mechanical mobility according to the

mobility analogy) as,

ZE =

 1

jωC
+

1(
1

jωM

) +
1(
1
R

)
−1

= YM =
1

ZM
. (4.28)

The above simplifies to,

ZE =

(
1

jωC
+ jωM +R

)−1

= YM =
1

ZM
. (4.29)

from which the mechanical impedance can be identified as,

ZM ↔
1

ZE
= jωM +

1

jωC
+R. (4.30)

Hence, the mobility analogy yields the same mechanical impedance as the impedance

analogy, and so the equivalent electrical circuit in figure 4.6 is also entirely anal-

ogous to the mechanical system shown in figure 4.4.

4.7 Taking the Dual: Impedance vs. Mobility

The relation between impedance and mobility analogies is a deep one. They are

the dual of one another. To take the dual of an equivalent circuit we just have

to remember a few key rules:

1) Current source ↔ voltage source (and vice versa)

2) Capacitor ↔ inductor (and vice versa)

3) Resistor ↔ conductor (1/resistor) (and vice versa)

4) Series ↔ parallel (and vice versa)

4.8 A Closer Look at Mechanical Impedance

Using our equivalent impedance and mobility circuits above we have obtained the

mechanical impedance of the mass spring system in figure 4.4,

ZM = R+ jωM +
1

jωC
. (4.31)

Note that the mechanical impedance is frequency dependent and complex. It is

convenient rewrite the imaginary part as a single term as so,

ZM = R+ jωM − j

ωC
(4.32)

ZM = R+ j

(
ωM − 1

ωC

)
. (4.33)

In doing so we have also separated the frequency independent and dependant

parts.
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The real part of the mechanical impedance is called the resistance, this is not

a function of frequency, this kind of damping effects all frequencies equally. The

resistance represents all energy dissipation in the model; in this case energy is

dissipated, via friction, as heat. The imaginary part of mechanical impedance is

known as the reactance. This is a frequency dependant function that depends

on the mass of the driver and the compliance of the suspension. The imaginary

part of mechanical impedance represents energy storage, i.e. reactive energy is

not dissipated.

Looking at the impedance in equation 4.33 we can see there is a contribution

due to the mass which increases with frequency (jωM). This linear increase of

the impedance with frequencies implies that for every doubling of frequency (an

octave) the mechanical impedance doubles; this is equivalent to saying that due

to the mass the impedance increases at a rate of +6dB / octave. Conversely,

the compliant term ( 1
jωC ), halves for every doubling of frequency; therefore, a

compliant impedance causes a decrease in mechanical impedance at a rate of

-6dB / octave.
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Figure 4.7: Mechanical impedance of a mass
spring system (M=0.01 kg, C=1×10-4m/N and
R=10 Nsm−1)

In Figure 4.7, the value of the impedance at resonance is 1 Nsm−1. At reso-

nance, the reactive motion due to the mass and the reactive motion due to the

spring are equal but with opposite phase, thus the reactive part of the impedance

is 0 and the impedance takes on its minimum value, i.e. that of the resistance

alone. For the reactance to be zero, from 4.33,(
ωcM −

1

ωcC

)
= 0. (4.34)

This leads us to an expression for the resonant frequency,

ωc =

√
1

MC
. (4.35)

Recall from the definition of mechanical impedance that the velocity response

due to a force input is the force divided by the mechanical impedance,

u =
F

ZM
=

F

R+ jωM + 1
jωC

. (4.36)

Figure 4.8 shows the velocity response to a 1 N sinusoidal input. The velocity

is clearly greatest at resonance, with a +6dB/Oct rise in the stiffness region and
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a -6dB/Oct fall in the mass region. This is the typical velocity response shape

we would expect to see for a loudspeaker. The challenge in loudspeaker design is

to turn this resonant response into a flat frequency response at our ears.
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Figure 4.8: Velocity response impedance of a
mass spring system (M=0.01 kg, C=1×10-4m/N
and R=10 Nsm−1)

4.9 Q-factor

The ‘peakyness’ or sharpness of a resonant response is an important characteristic

of vibrating system. We can characterise the sharpness of a resonance using the

so called Q-factor, defined as so,

Q ,
ωc
∆ω

=
ωc

ω2 − ω1
(4.37)

where ωc is the resonance frequency of the system, and ∆ω is the half power

bandwidth (i.e. the spacing between the upper and lower frequencies ω2 and ω1

where the output power of the system is half that of the maximum value. )

It is possible to reformulate the Q-factor in terms of the mass, compliance and

damping of a system. This form will be particularly useful when we start to look

at loudspeaker systems.

To derive this alternate form we begin by recalling the resonant frequency as

a function of system mass and compliance,

ωc =

√
1

MC
. (4.38)

Next we must derive an appropriate expression for the full half power bandwidth

∆ω.

The complex power P of a vibration system is given by,

P = u∗F (4.39)

where u∗ is the complex conjugate of u. Note that we are interested in the real

power. This is the power that actually does work on the system.

<(P ) = <(u∗F ) (4.40)

Now we can substitute the force F for the product of velocity and impedance,

<(P ) = <(u∗uZ). (4.41)
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Using the identity z∗z = |z|2, the above becomes

<(P ) = |u|2<(Z) (4.42)

which leaves us with

<(P ) = |u|2R. (4.43)

Equation 4.43 states that the real power is proportional to the velocity squared

and the damping of the system.

Clearly, the maximum achievable power is that when the velocity is a maximum.

Noting that at maximum velocity, the reactance is 0 and the impedance is purely

resistive, we have that,

Pmax = |umax|2Z = |umax|2R. (4.44)

The half maximum power can then be written as,

Pmax
2

=
|umax|2

2
R =

∣∣∣∣umax√2

∣∣∣∣2R. (4.45)

We are interested in when the real power <(P ) is equal to the half maximum

power,

<(P ) =
Pmax

2
→ |u|2R =

|umax|2

2
R (4.46)

which is equivalent to,

|u| =
∣∣∣∣umax√2

∣∣∣∣ . (4.47)

Noting that |u|FZ , the above may be rewritten in the form,∣∣∣∣FZ
∣∣∣∣ =

∣∣∣∣ F

R
√

2

∣∣∣∣→ |Z| = R
√

2. (4.48)

Squaring both sides of the above we get,

R2 +X2 = 2R2 (4.49)

where |Z|2 = R2 +X2. This equation has two solutions, X = ±R. Substituting

in for the reactance X and doing some minor rearrangement,

X = R X = −R (4.50)

ω1M −
1

ω1C
= R ω2M −

1

ω2C
= −R (4.51)

ω2
1M − ω1R =

1

C
ω2

2M + ω2R =
1

C
(4.52)

we arrive at an equation for the full half power bandwidth ∆ω = ω2 − ω1,

ω2
1M − ω1R = ω2

2M + ω2R→ ω2 − ω1 =
R

M
. (4.53)

Substituting equation 4.53 and 4.38 into the definition of Q-factor we can

derive alternate forms of the Q-factor,

Q =

√
1

MC

R
M

=
M

R

√
1

MC
=
Mωc
R

=
1

R

√
M

C
. (4.54)

Of most interest to us is the Q-factor expression,

Q =
1

R

√
M

C
. (4.55)
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Lets consider some limiting cases and check equation 4.55 makes sense. What

happens as the damping tends to infinity? The Q tends to 0! This makes sense.

How about if we set the damping to 0? The Q becomes infinite! This also makes

sense.
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Figure 4.9: High Q-factor response
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Figure 4.10: Low Q-factor response

4.10 Mass on a Spring the Long Way: Transient Analysis

Having derived the mechanical impedance of a mass-spring system through the use

of equivalent circuits and the impedance/mobility analogy, we will now consider

a more conventional analysis .

The first step is solving a mechanics problem (such as the motion of a mass-

spring system) is to identify all of the forces acting on the body of interest. This

is typically done by drawing a free body diagram of the problem. A free body

diagram of a loudspeaker cone is shown in figure 4.11. Three forces are identified;

the external force applied by the voice coil Fext, the elastic reactionary (/restoring)

force provided by the driver’s suspension Fk, and its associated resistive frictional

force FR.

Applied force from

voice coil, F = BLi
Displacement, x

Resistive frictional force, FR

Elastic reactionary force, Fk

Velocity, u

Figure 4.11: Free body diagram showing me-
chanical forces acting on loudspeaker diaphragm

According to Newton’s 2nd law, the total force applied to body is equal to its

mass time its acceleration, ∑
F = Ma. (4.56)

This total force acting on the mass is apparent from Figure 4.11, the resistive and

reactive forces are in the opposite direction to the applied motion. The actual

direction of the motion is arbitrary, the resistive and elastic elements act to oppose

this motion and are therefore negative. Consequently we have that,

Fext − Fk − FR = Ma. (4.57)

Substituting the elastic and friction forces for that of a simple spring-dashpot, we

can now write our equation of motion,

Fext = Ma+
1

C
x+Ru. (4.58)

It is helpful to write equation 4.58 this in terms of a single kinematic variable. In

this case we will write each factor in terms of displacement (x). In doing so we

get a 2nd order in homogenous differential equation,

Fext = Mẍ+
1

C
x+Rẋ. (4.59)
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Note that there are three main ways of expressing derivatives. Newton and

Leibniz both independently developed a theory of calculus; Leibniz’s notation is

the more familiar but Newton’s (and Lagrange’s) is the more compact. Equation

Notation Displacement Velocity Acceleration

Newton’s x ẋ ẍ

Lagrange’s x x′ x′′

Leibniz’s x dx
dt

d2x
dt2

Table 4.1: Different ways of expressing deriva-
tives

4.59 is often referred to as inhomogeneous equation of motion. The homogenous

form is given by,

0 = Mẍ+
1

C
x+Rẋ (4.60)

where Fext = 0, i.e. the system is allowed to respond freely as it chooses. This

is often called the transient equation of motion.

A general solution to the equation of motion as represented by equation 4.59

is the sum of complementary function and particular integral,

x = xcf + xp. (4.61)

The complementary function corresponds to the transient solution of the equation

of motion, obtained from the homogenous form of the equation of motion. The

particular integral corresponds to the steady state solution obtained directly from

the inhomogeneous form.

Starting with the homogenous equation, let us assume a solution of the form

x = Aeγt,

0 = Mγ2Aeγt +
1

C
Aeγt +RγAeγt =

(
Mγ2 +

1

C
+Rγ

)
Aeγt (4.62)

If we assume that the above solution is valid for all time, then the value of the

exponential term does not matter, and so we can remove it,

0 = Mγ2 +
1

C
+Rγ. (4.63)

This is a quadratic equation in γ, i.e. it has two roots! We can find them using

the quadratic formula,

γ =
−R±

√
R2 − 4MC

2M
. (4.64)

Figure 4.12: Over damped transient response

Figure 4.13: Critically damped transient re-
sponse

Figure 4.14: Under damped transient response

Note that our differential equation is linear, and so obeys the principle of

superposition; the general solution is the linear combination of both solutions.

xcf = Aeγ1t +Beγ2t (4.65)

where AB and B are constants that depend on the initial conditions. Substituting

in for the quadratic roots we have that,

xcf = Ae
−R+

√
R2−4M

C
2M t +Be

−R−
√
R2−4M

C
2M t (4.66)

The above expression can be factored into a more convenient form,

xcf = e
−R
2M t

(
Ae

√
R2−4M

C
2M t +Be

√
R2−4M

C
2M t

)
(4.67)
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The first exponential term acts as decay term, whose rate depends on the amount

of damping R and the mass M . The second bracketed term corresponds to a

potential oscillation term; depending on whether the argument of the square root

is positive or negative this term will either yield another exponential decay, or an

oscillation.

There are 3 distinct scenarios regarding the above.

1) 4MC < R2 - the square root is positive so we have real roots and no oscillation

(over damped).

2) 4MC = R2 - the square root is 0 so we have the decay term only and no

oscillation (critically damped).

3) 4MC > R2 - the square root is negative so we have complex roots (
√
−N =√

(−1)N =
√
−1
√
N = j

√
N) and oscillation (under damped).

These 3 conditions can be expressed in terms of the Q-factor as so,

1) Q < 1
2 - over damped

2) Q = 1
2 - critically damped

3) Q > 1
2 - under damped

To get the steady state solution we consider a periodic applied force F =

F0e
jωt

F = F0e
jωt = Mẍ+

1

C
x+Rẋ. (4.68)

Since we are dealing with a linear system, we know that the response will also be

periodic with the same frequency, x = x0e
jωt.

F0e
jωt =

(
−ω2M +

1

C
+ jωR

)
x0e

jωt (4.69)

The steady state solution is then given by,

xs =
F

−ω2M + 1
C + jωR

=
F

jω
(
R+ j

[
ωM − 1

ωC

]) (4.70)

The complete solution is now obtained by adding together the transient and

steady state solutions,

x = e
−R
2M t

(
Ae

√
R2−4M 1

C
2M t +Be

√
R2−4M 1

C
2M t

)
+

F

ω2M + 1
C + jωR

. (4.71)

Note that as t → ∞ the transient part of the solution will tend to 0. We will

focus primarily on the steady state part in our loudspeaker design.

Finally, note that by taking the derivative of the stead state response derived

above,

u =
dx

dt
=

d

dt

F

jω
(
R+ j

[
ωM − 1

ωC

]) =
F(

R+ j
[
ωM − 1

ωC

]) (4.72)

we arrive at exactly the same velocity response we obtained using our equivalent

circuit approach.



5 Acoustic Domain

So far we have covered the electrical and mechanical domains. The final domain

of interest is the acoustic domain. The acoustic domain encompasses all the

radiative aspects of loudspeaker design. This includes not only the propagation

of sound to a receiver, but also the effect of air loading on the mechanical domain

(i.e. radiation impedance).

5.1 Acoustic Impedance and Mobility

The acoustic domain, like the electrical and mechanical, has a notion of impedance.

In fact, the acoustic domain has 3 different notions of impedance! Let us begin

by first recalling the definitions of electrical and mechanical impedance,

ZE =
V

i
(5.1)

ZM =
F

u
. (5.2)

In the acoustic domain our state variables are pressure and either particle or

volume velocity. The former leads to a definition of specific acoustic impedance;

the ratio of acoustic pressure to particle velocity, i.e. the velocity at which the

particles of air in an acoustic wave move.

ZAs =
p

u
. (5.3)

The specific acoustic impedance describes the impedance a wave sees as it prop-

agates through a medium. It described the relationship between the pressure and

particle velocity, which is specific for that medium and that wave type (e.g. plane

waves and spherical waves have a different specific impedance).

The use of volume velocity leads to a definition of the (usual) acoustic impedance;

the ratio of acoustic pressure to volume velocity,

ZA =
p

U
. (5.4)

Another commonly used variant of the acoustic impedance is that of the ra-

diation impedance, defined as the specific acoustic impedance multiplied by the

area of the radiating surface.

ZAr = S
p

u
(5.5)

It basically describes how efficiently a surface can radiate.

The (usual) acoustic impedance ZA is the most common form, and so it is

useful to define its reciprocal value, the acoustic mobility,

YA =
U

p
. (5.6)
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5.1.1 Volume Velocity

Volume velocity is defined as the product of the normal component of surface

velocity u, with the area of that surface S. For a uniformly vibrating surface, for

example a sphere or a disk, it is given quite simply as velocity times total area.

U = Su (5.7)

For more complex vibrating geometries the differential volume velocity,

dU = n̂ · udS (5.8)

where n̂ is the unit vector normal to the differential surface dS, can be integrated

across the structures surface to yield a total volume velocity.

u
S

Figure 5.1: Volume velocity of a rigid disk.

From equation 5.7 we can see that the units of volume velocity are m3/s. We

can see why its called a volume velocity. We have meters cubed, i.e. volume,

per second, i.e. velocity. Also, unlike particle or surface velocity, volume velocity

isn’t a vector, it’s a scalar (i.e. it doesn’t have a direction, only a magnitude).

5.1.2 Acoustic vs. Mechanical Impedance

As in the electrical and mechanical domain, there are 3 main acoustic elements for

which we can define an acoustic impedance (and mobility). Like the mechanical

domain, these correspond to mass, spring and damper like elements. We will

cover these elements shortly, but first it is important to demonstrate the relation

between mechanical and acoustic impedance.

Noting that pressure is defined as the force per area, p = F/S, or

F = Sp, (5.9)

the mechanical impedance can be rewritten as,

ZM =
pS

u
(5.10)

which can be further rearranged as so,

p =
uZM
S

. (5.11)

Substituting the above into the definition of acoustic impedance yields,

ZA =
p

U
=

p

uS
=

(
uZM
S

)
uS

=
ZM
S2

. (5.12)

Equation 5.12 states that the acoustic impedance ZA is related to the mechanical

impedance ZM by surface area squared.

5.2 Acoustic Mass

A lump of air that moves as a single unit will behave as if it were a mass-like

element. Consequently, it obeys Newton’s second law,

F = MM
du

dt
(5.13)

where MM is the mechanical mass (in kg) of the lump of air, u is its velocity,

and F is the applied force.
U

L

S
ρ0

Figure 5.2: Acoustic mass element.
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When dealing with acoustic elements it is useful to express their behaviour in

terms of acoustic variables, i.e. pressure and volume velocity. Dividing both sides

of the above by S and then multiplying the top and bottom of the right hand

side by S we obtain,

F

S
=
MM

S

du

dt
→ F

S
=
MM

S

1

S

d(uS)

dt
. (5.14)

Noting that F/S is the definition of pressure, and that volume velocity is given

by uS = U , the above is equivalent to,

p = MA
d(U)

dt
(5.15)

where we have introduced the definition of ‘acoustic mass’, MA = MM/S
2. As

in the mechanical domain, if we assume a periodic excitation (i.e. p = p0e
jωt),

the derivative can be evaluated quite easily and we obtain,

p = jωMAU. (5.16)

From equation 5.16 we can readily obtain the acoustic impedance of a (lump)

mass of air,

ZA =
p

U
= jωMA. (5.17)

Similarly, the mobility can be obtained as,

YA =
U

p
=

1

jωMA
. (5.18)

Note that the impedance (and mobility) of an acoustics mass is identical in

form to that of a mechanical mass. The only difference is that we use the acoustic

mass MA, as opposed to the mechanical mass MM . As we have previously shown,

these are related by a factor of S2.

Before moving onto an acoustic compliance lets look a little more closely at

the acoustic mass. Substituting the mechanical mass for the element’s length L,

surface area S and density ρ0, we have that,

MA =
MM

S2
=
LSρ0

S2
=
Lρ0

S
. (5.19)

Perhaps surprisingly equation 5.19 indicates that the acoustic mass of a lump of

air is inversely proportional to its surface area! As you increase the surface area

(and so the size of the element) the acoustic mass decreases. This is a little

counter intuitive, but important to remember.

It is important to note that the above treatment for an acoustic mass assumes

that no waves are able to propagate within the mass itself. This is assump-

tion is fundamental to the application of the lumper parameter approach we are

considering.

5.3 Acoustic Compliance

Now onto the compliance, or ‘spring’ element. An acoustic compliance can be

thought of as a cavity or box of air, with an opening over which a fluctuating

pressure can act. According to our lumped parameter assumption, we can not

have any wave propagation within the element. This means that the pressure
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is the same across the entire cavity, and remains so as an external pressure is

applied.
U

V0

ρ0

Figure 5.3: Acoustic compliance element.

The equation that governs the compression of a volume of air by some net

force is given as so,

F =
1

CM

∫
udt (5.20)

where CM is the mechanical compliance of the volume. The above equation

can be converted into acoustic units following the same approach as the mass

element,
F

S
=

1

CMS

1

S

∫
(uS)dt. (5.21)

The above is entirely equivalent to,

p =
1

CA

∫
Udt (5.22)

where we have introduced the definition of ‘acoustic compliance’, CA = CMS
2.

Assuming a periodic excitation, the above yields the acoustic impedance,

ZA =
p

U
=

1

jωCA
(5.23)

and the acoustic mobility,

YA =
U

p
= jωCA. (5.24)

Note that the impedance (and mobility) of an acoustics compliance is identical

in form to that of a mechanical spring.

The acoustic compliance of a volume can be related to the volume of the cavity

V and the properties of the enclosed gas as so,

CA =
V

ρ0c2
(5.25)

where ρ0 is the density of air and c is the speed of sound.

5.4 Acoustic Damping

The final acoustic element to consider is that of an obstruction, or an acoustic

damping material. Any structure which dissipates the energy of acoustic particles,

for example a fine mesh, or a fibrous material like foam, can act as an acoustic

damper. The acoustic resistance through such a material is proportional to the

particle velocity (i.e. fast particles face a greater resistance). This is similar to

the viscous damping law in our mechanical system. U U

p1 p2

Figure 5.4: Acoustic resistance element.

The governing equation for the resistance faced by an acoustic wave is given

by,

F = RMu. (5.26)

Conversion into acoustical units yields,

p = RAU (5.27)

where we have introduced the ‘acoustic resistance’, RA = RM
S2 . The acoustic

impedance of an obstruction is then given by,

ZA =
p

U
= RA (5.28)
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and its acoustic mobility by,

YA =
U

p
=

1

RA
. (5.29)

Note that the impedance (and mobility) of an acoustics obstruction/damper

is identical in form to that of a mechanical resistance, and is independent of

frequency.

5.5 Acoustic Circuits

Now that we have derived the acoustic impedance and mobility of mass, spring,

and damping like elements, we can consider the formulation of equivalent circuits

that describe acoustical systems. We will introduce the equivalent acoustic circuit

by way of an example.

MA

CA

RA

U

p

Figure 5.5: Acoustic Helmholtz resonator.

Shown in figure 5.5 is a Helmholtz resonator. It consists of an acoustic cavity

to which a short duct is attached with a fine mesh within. The lump of air that

sits within the short duct behaves as a mass like element. This acoustic mass

sits on top the acoustic compliance provided by the cavity. The fine mesh housed

within the duct acts like an acoustic obstruction/damper, opposing the motion

of the acoustic mass as it ‘bounces’ on top of the cavity.

The acoustic system that is the Helmholtz resonator can be modelled using an

equivalent circuit, much like our previous mass on a spring. To form an equivalent

circuit we must first chose an analogy to follow. The analogy dictates whether we

relate pressure to voltage and volume velocity to current or visa vera. As in the

mechanical domain, we have two choices, the so called impedance and mobility

analogies.

The impedance analogy retains an equivalence between the notion of impedance,

such that,

ZA ∼ ZE . (5.30)

To achieve this we must have that,

p↔ V (Drop) (5.31)

U ↔ i (Flow). (5.32)

The mobility analogy instead draws an equivalence between electrical impedance

and acoustic mobility, such that,

YA =
1

ZA
∼ ZE . (5.33)

To achieve this we must have that,

U ↔ V (Drop) (5.34)

p↔ i (Flow). (5.35)

Which analogy we choose to adopted will depend on the problem at hand, but

also on personal preference. Like the mechanical domain, the impedance analogy

has the advantage of retaining an equivalence between the impedance in each

domain, whilst the mobility analogy has the advantage of retaining the topology

of the problem.
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5.5.1 Impedance Analogy

From inspection we can see that the impedance of an acoustic mass is identical in

form to the impedance of an inductor, MA → LE . Similarly, we can see that the

impedance of an acoustic compliance is identical in form to the impedance of a

capacitor, CA → CE , and that an acoustic damper is equivalent to an electrical

resistor, RA → RE .

According to the impedance analogy, the volume velocity of an acoustic ele-

ment is equivalent to the current flowing through the equivalent electrical element,

and the pressure is equivalent to its voltage drop. We can see from figure 5.5 that

as the mass element oscillates with volume velocity U , the obstruction and cavity

both see the same volume velocity. In an equivalent circuit this corresponds to

each component seeing the same current. For each component to have the same

current the circuit must be in series, as in figure 5.6.

p

U RA
CA

MA

Figure 5.6: Acoustic impedance analogue.

Note that the acoustic system in figure 5.5 is excited externally by an applied

pressure p. According to the impedance analogy p → V and so our equivalent

circuit is driven by an ideal voltage source.

From figure 5.6 we can determine the total acoustic impedance of the Helmholtz

resonator by finding the equivalent electrical impedance. For a series circuit this

is simply,

ZE = jωMA +
1

jωCA
+RA = ZA. (5.36)

From the above it is clear that determining the volume velocity of the acoustic

mass element is equivalent to find the current in the equivalent circuit,

i =
V

ZE
← U =

p

jωMA + 1
jωCA

+RA
. (5.37)

This is exactly what we would get is we followed a more conventional analysis.

In summary, the equivalent electrical circuit in figure 5.6 is entirely analogous

to the acoustic system shown in figure 5.5.

5.5.2 Mobility Analogy

To form an equivalent circuit according to the mobility analogy, each acoustic

element is represented by an equivalent electrical component whose impedance is

of the same form as the acoustic element’s mobility. Consequently, the acoustic

mass element is represented by an electrical capacitor (with capacitance MA),

the acoustic compliance by an inductor (with inductance CA), and the acoustic

damping by a resistor (whose resistance is one over the damping coefficient RA).

According to the mobility analogy, the volume velocity of an acoustic element

is equivalent to the voltage drop across its equivalent electrical component. Sim-

ilarly, the pressure is equivalent to the current flowing through the equivalent
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electrical component. Again, note that the mass, cavity and obstruction all share

the same volume velocity; in an equivalent circuit this corresponds to each com-

ponent seeing the same voltage. For each component to have the same voltage

drop the circuit must be in parallel, as in figure 5.7.

U

p

1/RACA MA

Figure 5.7: Acoustic mobility analogue.

Note that the acoustic system in figure 5.5 is excited externally by an applied

pressure p. According to the mobility analogy p→ I and so our equivalent circuit

is driven by an ideal current source.

From figure 5.7 we can determine the total acoustic impedance of the Helmholtz

resonator by first finding the equivalent electrical impedance. For a parallel circuit

this is simply,

ZE =

(
1

jωCA
+

1
1

jωMA

+
1
1
RA

)−1

. (5.38)

Recalling the mobility analogue relation ZA = 1/ZE , the acoustic impedance is

obtained as,

ZA = jωMA +
1

jωCA
. (5.39)

This is exactly what we obtain using the impedance analogy!

In summary, the equivalent electrical circuit in figure 5.7 is also entirely anal-

ogous to the acoustic system shown in figure 5.5.



6 Coupling Domains

So far we have introduced the mechanical and acoustic domains, and shown that

by adopting a particular analogy (impedance or mobility based), equivalent circuits

can be employed to model physical systems. In this chapter we will introduce the

theory of ideal transformers and show how it can be used to couple together our

electrical, mechanical and acoustical circuits. This will enable us to form a single

equivalent circuit encompassing the three domains of a loudspeakers operation.

6.1 Transducers

The act of converting one form of energy (or domain) to another is called trans-

duction. The electro-dynamic loudspeaker employed two forms of transduction;

from the electrical domain to the mechanical domain (so called electro-mechanic

transduction), and from the mechanical domain to the acoustic domain (so called

mechano-acoustic transduction). In order to couple the electrical, mechanical and

acoustical domains it is first necessary to introduce the transduction equations

that relate their respective state variables.

6.1.1 Electro-mechanical

There are two main types of electro-mechanical transduction. One is called

electro-dynamic and the other is called electro-static. We will consider only

electro-dynamic transduction, as this is used by most conventional loudspeak-

ers.

An electro-dynamic transducer is based on the interaction between a static

magnetic field and a dynamic electrical field that surrounds a conductor (i.e. the

voice coil). Any conductor carrying a current in a magnetic field is subject to

a Lorentz force. It is this Lorentz force that drives the motion of a loudspeaker

diaphragm. We will cover the electo-magnetic aspects of
loudspeakers in more detail later on.The total Lorentz force generated by the voice coil is related to the strength

of the applied magnetic field B (i.e. a stronger magnet will give use a greater

force), the length of the voice coil wire L, and the current i running through it,

F = Bli. (6.1)

Electro-dynamic transduction is a two way phenomena. When a conductor

moves in a magnetic field, a voltage is generated across its length. This voltage

is proportional to the field strength B, the coil length L, and the conductor’s

velocity u,

V = Blu. (6.2)
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The voltage V is often called the back EMF (electro-motive force). It is an

induced voltage that opposes the flow of current. It has the effect of reducing

the overall current.

i = iapplied − ibEMF (6.3)

6.1.2 Mechano-acoustical

Transduction from the mechanical to acoustic domain is straight forward and the

governing equations have already been introduced (see equations 5.7 and 5.9),

F = Sp (6.4)

U = Su. (6.5)

The above equations relate mechanical force F and velocity u, to acoustic pressure

p and volume velocity U .

Equations 6.1, 6.2, 6.4, and 6.5 describe the electro-acoustical transduction

of an electro-dynamic loudspeaker. It happens that their mathematical form is

identical to those of an ideal transformer.

6.2 Ideal Transformers

Transformers are passive electrical devices which transfers electrical energy be-

tween two or more circuits (see figure 6.1 for a diagrammatic illustration). A

widespread application is to step up or (down) voltages and currents. For exam-

ple, if you want to send a current over a long distance, you encounter far fewer

losses when you use a transformer to step down the current and step up the

voltage. Then on the other side you just step it the other way and recover the

current.

The fundamental operation of a transformer is described by Faraday’s law of

induction. A time varying current flowing around a primary coil, through which we

have a magnetic core, induces a time varying magnetic field in the core. Around

another part of the core we have a second coil. The time varying magnetic field

then induces an Electro-Motive Force (EMF) across its length.

Ip

Vp

Is

Vs

Magnetic Flux Φ

Primary
winding

Secondary
winding

(Np turns)

(Ns turns)

Figure 6.1: Ideal transformer

We are interested in the characteristics of ideal transformers only. This means

that a) there is a perfect coupling between the coil and the magnetic flux, and b)

that the coils have 0 resistance and 0 inductance. This amounts to the assumption

that the power supplied to the transformer, is equal the power supplied by the

transformer. Recalling the definition of electrical power,

P = V i (6.6)

an ideal transformer satisfies the following equation,

Pin = Pout −→ Vpip = Vsis (6.7)

where Vp and Vs are the voltages across the primary and secondary side windings,

respectively. Similarly, ip and is are the currents flowing through the primary and

secondary side windings, respectively. The above can be rearranged as so,

Vp
Vs

=
is
ip
. (6.8)
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Equation 6.8 states that if you step up the voltage across the transformer, then

the current is reduced proportionally. This is the conservation of energy.

It can be shown that the turns ratio α of the transformer (i.e. the ratio of the

number of turns on the primary and secondary windings) is equal to the ratio of

primary and secondary side voltages,

Vp
Vs

=
Np
Ns

= α. (6.9)

From equation 6.8 we also have that the change in current is determined by the

reciprocal of this same ratio,
ip
is

=
1

α
. (6.10)

6.3 Equivalent Circuit Transformers

It happens that the equations governing the transformation of voltage and current

across an ideal transformer are identical in form to those of our electro-mechanical

and mechano-acoustical transduction.

From equation 6.9 we have that the primary side transformer voltage Vp is

related to the secondary side voltage Vs through the turns ratio α. Similarly,

from equation 6.2 we have that the voltage across the voice coil of a loudspeaker

V is related to the diaphragm velocity u through the force factor Bl.

Vp = αVs ←→ V = Blu (6.11)

From equation 6.10 we have that the primary side transformer current ip is related

to the secondary side current is through the reciprocal turns ratio 1/α. Similarly,

from equation 6.1 we have that the current through the voice coil of a loudspeaker

i is related to the force F applied to the diaphragm through the reciprocal force

factor 1/Bl.

ip =
1

α
is ←→ i =

1

Bl
F (6.12)

From the above it is clear that an ideal transformer whose turn ratio α is equal

to the force factor Bl will implement exactly the electro-mechanical transduction

of a loudspeaker.

α : 1 Bl : 1ip is

Vp Vs

i F

V u

Figure 6.2: Ideal transformer vs. electro-
mechanical coupling.

The electro-mechanical transformer shown in figure 6.2 provides a means of

coupling an equivalent mechanical circuit to the electrical domain. Note that on

the output of the electro-mechanical transformer we have that force is equivalent

to current, and velocity is equivalent to voltage. This is the mobility analogy. To

incorporate the dynamics of mechanical domain we can simply substitute in our

mobility based equivalent circuit for a mass spring system (see figure 4.6). The

coupled electro-mechanical system is now represented by the equivalent circuit
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in figure 6.3. Note that in figure ?? we have introduced two new electrical

components, a resistor and inductor. The purpose of these components is to

model the resistive and inductive properties of the voice coil.

Bl : 1

Vin

i

RE LE F

u1
RM

MM CM

Figure 6.3: Ideal transformer coupling between
electrical and mechanical domains.

Now let us consider the mechno-acoustic transduction. From equation 6.9 we

have that the primary side transformer voltage Vp is related to the secondary side

voltage Vs through the turns ratio α. Similarly, from equation 6.5 we have that

the velocity of the loudspeaker diaphragm u is related to the acoustic volume

velocity U through the reciprocal of surface area 1/SD.

Vp = αVs ←→ u =
1

S
U (6.13)

From equation 6.10 we have that the primary side transformer current ip is related

to the secondary side current is through the reciprocal turns ratio 1/α. Similarly,

from equation 6.4 we have that the force applied to a loudspeaker F is related

to the acoustic pressure p through the surface area SD.

ip =
1

α
is ←→ F = Sp (6.14)

From the above it is clear that an ideal transformer whose turn ratio α is equal to

the reciprocal of surface area 1/SD will implement exactly the mechano-acoustical

transduction of a loudspeaker.

α : 1 1 : S

1
S : 1

ip is

Vp Vs

F p

u U

Figure 6.4: Ideal transformer vs. mechano-
acoustical coupling.

The mechano-acoustical transformer shown in figure 6.4 provides a means of

coupling equivalent mechanical and acoustical circuits. Note that on the out-

put of the mechano-acoustical transformer we have that pressure is equivalent

to current, and volume velocity is equivalent to voltage. This is again the mo-

bility analogy. To incorporate the dynamics of acoustic domain we simply place

the appropriate mobility based equivalent circuit onto the right hand side of the

mechano-acoustical transformer. The coupled mechano-acoustical system is now

represented by the equivalent circuit in figure 6.5.
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Bl : 1 1 : S

Vin

i

RE LE F

1
RM

MM CM u

p

1
ZAb

1
ZAf U

Figure 6.5: Ideal transformer coupling between
mechanical and acoustical domains.

Note that in figure 6.5 we have introduced two arbitrary acoustical elements,

represented by the impedances ZAf and ZAb. The purpose of these elements

are to account for the acoustic loading on the front and rear of the loudspeaker

driver. The two elements have been arranged in parallel as the mechano-acoustical

transformer yields a mobility analogue on its output. The air load in front and

behind of the driver experience the same volume velocity (albeit 180 degrees out

of phase) as they are both in direct contact with the driver. According to the

mobility analogy U → V , and so to achieve the same voltage the two elements

must be in parallel.

The exact form of ZAf and ZAb will be dictated by the type of cabinet (if any)

the loudspeaker driver is housed in. Later we will consider the sealed and vented

cabinet in particular.

6.4 Removing Transformers

Now that we have successfully coupled our three domains we are almost in a

position to start analysing our equivalent circuit. Unfortunately, the electro-

mechanical and mechano-acoustical transformers complicate this analysis. We

are therefore interested in removing the transformers to get a more simple circuit

that we can analyse using our AC circuit theory.

The removal of a transformer from an electrical circuit involves moving all com-

ponents to one particular side (primary or secondary) by applying an appropriate

scaling to voltage, current and impedance. The act of moving a component across

a transformer and scaling it accordingly is called ‘referring the impedance to the

primary (or secondary) side’. The form of the scaling will depend on whether the

components are moved from the primary to secondary side, or visa versa.

a : b

V1

i1

Z1 i2

V2 V2 = V1
b
a

i2

Z2 = Z1
b2

a2

i2

V2

Figure 6.6: Moving electrical components across
a transformer - left to right

Consider the simple transformer circuit in the left hand side of figure 6.6. On

the primary side we have an ideal voltage source V1 in series with an arbitrary

impedance Z1, through which a current i1 flows. A transformer with a turns ratio
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a/b connects a second circuit, whose voltage and current are V2 and i2, respec-

tively. We are interested in moving the voltage source and impedance element

across to the secondary side. This involves finding the equivalent voltage, current

and impedance that generates the same output as the transformer’s secondary

side.

We have already shown that the current through a transformer scales according

to the turns ratio (see equation 6.10),

i2 = i1
a

b
. (6.15)

Similarly, the voltage scales according to the reciprocal of the turns ratio (see

equation 6.9),

V2 = V1
b

a
. (6.16)

From the above it is clear that a primary side impedance must be scaled according

to the reciprocal turns ratio squared,

Z2 =
V2

i2
=
V1

b
a

i1
a
b

= Z1

(
b

a

)2

. (6.17)

The scaled voltage, current and impedance above will yield an output identical to

that of the transformer, i.e. the two circuits in figure 6.6 are entirely equivalent.

Now consider the simple transformer circuit in the left hand side of figure

6.7. On the primary side we have a voltage source V1 connected directly to

a transformer of turns ratio a/b, through which a current i1 flows. On the

transformer’s output a second circuit is connected containing a series impedance

element Z2. The voltage across and current through the secondary winding are V2

and i2, respectively. We are interested in moving the impedance element across

to the primary side.

By rearranging equations 6.15 and 6.16 we have that,

i1 = i2
b

a
(6.18)

and

V1 = V2
a

b
. (6.19)

From the above it is clear that the impedance must be scaled according to the

turns ratio squared,

Z1 =
V1

i1
=
V2

a
b

i2
b
a

= Z1

(a
b

)2

. (6.20)

The scaled impedance Z1 presents the same load to the voltage source as the

transformer did with Z2 on its output.

a : b

V1

i1

i2
Z2

V2 V1

i1

Z1 = Z2
a2

b2

i1

V1

Figure 6.7: Moving electrical components across
a transformer - left to rightIn summary, the rules for referring an impedance to the primary side (moving

components to the left) are:
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- Scale impedance by the turns ratio squared.

- Scale voltages by the turns ratio.

- Scale currents by the reciprocal of the turns ratio.

For referring an impedance to the secondary side (moving components to the

right):

- Scale impedance by the reciprocal of the turns ratio squared.

- Scale voltages by the reciprocal of the turns ratio.

- Scale currents by the turns ratio.

Using these rules we are now able to remove the transformers from our equivalent

loudspeaker circuit in figure 6.5.

6.5 Complete Equivalent Circuit

When removing the transformers from our equivalent circuit we can either move

the components to the left (into the electrical domain) or to the right (into the

acoustic domain). For now we are interested in the determining the acoustic

response of our loudspeaker and so we will consider the latter. We will consider

the movement of components into the electrical domain later when we consider

the electrical impedance of our loudspeaker.

Removal of the transformers from figure 6.5 is a two step procedure. First we

must transfer all electrical domain components (and sources) into the mechanical

domain through the electro-mechanical transformer with turns ratio Bl. Next all

the mechanical domain components (including the newly transferred electrical

components) are transferred into the acoustic domain through the mechano-

acoustic transformer with turns ratio 1/S. The resulting circuit is shown in figure

6.8.

SDV
Bl

p

S2
DRE

(Bl)2

S2
DLE

(Bl)2

S2
D

RM
MM

S2
D

S2
DCM

1
ZAb

1
ZAf U

Figure 6.8: Equivalent circuit with transformers
removed.

Note that the electrical resistance RE and inductance LE have been scaled by

S2
D/(Bl)

2, i.e. the combined squared reciprocal turns ratio of both transformers.

Similarly, the voltage source V has been scaled by the reciprocal turns ratio

of both transformers. The mechanical impedances have each been scaled by

S2
D, i.e. the squared reciprocal turns ratio of the mechano-acoustic transformer.

Recall that the impedance of the capacitor (representing mechanical mass) is

ZC = 1/jωMM , and so its scaled capacitance is given by MM/S
2
D.

Figure 6.8 represents a complete equivalent circuit model of our loudspeaker

in the acoustic domain. Note that it follows the mobility analogy where, V → U
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and i → p. A minor simplification can be made by recalling our definitions of

acoustic mass, compliance and damping. The subscript AD is used to denote the

driver’s properties once transferred into the acoustic domain.

SDV
Bl

p

S2
DRE

(Bl)2

S2
DLE

(Bl)2

1
RAD

MAD CAD
1
ZAb

1
ZAf U

Figure 6.9: Equivalent circuit with transformers
removed with mechanical impedance replaced by
acoustic impedance.

Note that our equivalent circuit is composed mostly of parallel elements,

with the exception of the electrical resistance and inductance. Although this

is amenable to our AC circuit analysis, further simplifications are available. We

would much prefer to analyse a series circuit... We know that a strictly parallel

circuit can be converted into a series circuit by taking its dual. However, our

equivalent circuit isn’t strictly parallel! The series electrical impedance ruin this

for us. What we want to do is replace these two series elements with some equiv-

alent parallel impedance. This sounds exactly like a good for Norton’s theorem.

6.5.1 Application of Norton’s Theorem

Using Norton’s theorem it is possible to replace a voltage source in series with a

known impedance, with an equivalent Norton current source in parallel with an

appropriate Norton impedance, as in figure 6.10.

SDV
Bl

p

S2
DRE

(Bl)2

S2
DLE

(Bl)2

ino

Zno

Figure 6.10: Equivalent Norton circuit for elec-
trical components in loudspeaker model.

The procedure for determining the Norton current source and impedance has

already been outlined and demonstrated on the simple circuit in figure 3.16. To

determine the Norton impedance Zno the voltage source is short circuited and

the impedance is found across the circuit’s output terminals. From figure 6.10

the Norton impedance is given by,

Zno =
RES

2
D

(Bl)2
+
jωLES

2
D

(Bl)2
. (6.21)

To obtain the Norton current ino the circuit’s output is short circuited and its

current found. From figure 6.10 the Norton current is given by,

ino =
V

Zno
=

V SD
Bl

RES2
D

(Bl)2 +
jωLES2

D

(Bl)2

. (6.22)
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Multiplying top and bottom by (Bl)2/SD then yields,

ino =
V Bl

SD(RE + jωLE)
. (6.23)

Now, according to Norton’s theorem, the circuits of figure 6.9 and 6.11 are

entirely equivalent. Figure 6.11 however, is strictly parallel!

V Bl
SD(RE+jωLE) S2

DRE
(Bl)2

S2
DLE

(Bl)2

1
RAD

MAD CAD
1
ZAb

1
ZAf U

Figure 6.11: Equivalent circuit with transformers
removed and Norton’s theorem applied.

6.5.2 Taking the Dual

Now that we have an entirely parallel equivalent circuit, we take take its dual to

obtain a simple series circuit. Recall the rules for taking the dual of an equivalent

circuit (i.e. converting from a mobility to impedance analogy):

1) Current source ↔ voltage source (and vice versa)

2) Capacitor ↔ inductor (and vice versa)

3) Resistor ↔ conductor (1/resistor) (and vice versa)

4) Series ↔ parallel (and vice versa)

Applying the above set of rules to circuit in figure 6.11 leads to an impedance

based formulation of our equivalent circuit loudspeaker model, as in figure 6.12.

V Bl
SD(RE+jωLE)

U

RAD MAD

CAD
ZAb

ZAf

U

(Bl)2

S2
DRE

S2
DLE

(Bl)2 pf

Figure 6.12: Equivalent circuit with transformers
removed and Norton’s theorem applied.

Figure 6.12 represents a complete low frequency equivalent circuit model of a

loudspeaker driver loaded by two arbitrary acoustic impedances. The volume

velocity procedure by the speaker is equivalent to the circuit’s current. The

form of the acoustic loading ZAf and ZAb will dictate whether the loudspeaker is

modelled in an infinite baffle or a sealed cabinet. To model a vented cabinet some

small modifications must be made to the circuit to account for the dynamics of

the vent.

Before we can applying an appropriate acoustic loading however, we must

consider the radiation of sound from a loudspeaker driver. Doing so will enable
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us derive the acoustic loading when radiating into free space (i.e. for a loudspeaker

in an infinite baffle). The effect of cabinetry can then be introduced by deriving

an appropriate acoustic back load ZAb.



7 Sound Radiation

In the previous chapter we developed an equivalent circuit model that describes

the low frequency (i.e. lumped parameter) behaviour of a moving coil loudspeaker.

Thus far we have not looked at how sound is radiated from loudspeakers, and

so we are unable to complete our equivalent circuit (we still need to assign the

acoustic loading). In this chapter we will consider the radiation of sound from

simple ’idealised’ sources, namely, the monopole, dipole and rigid piston. Based

on the radiation of a rigid piston we will derive a lumped parameter approximation

for the acoustic loading of the air surrounding a driver. This will allow us to model

the radiation of loudspeaker systems in the subsequent chapter, including infinite

baffle, sealed and vented cabinets.

7.1 Monopole

The acoustic monopole is the simplest acoustic source we have. Conceptually, a

monopole can be thought of as a rigid sphere whose radius is made to expand

and contract periodically. This pulsation causes a compression and rarefaction

in the surrounding medium which then propagates as an acoustic wave. In the

limit that the radius of the monopole sphere tends to 0 we arrive at a so called

’point source’. The key feature of a monopole, or point source, is that it radiates

sound in all directions equally, i.e. the surrounding pressure field depends only on

distance. Although the monopole is an idealised source, at low frequencies most

sound sources tend behave approximately like monopoles.

One of the useful things about monopoles is that they can be combined in

various arrangements to model more complex, and thus realistic, acoustic sources.

We will see this shortly when we look at dipole and piston sources.

The equation governing the acoustic radiation from a monopole is,

p(r, t) =
jρ0cka

2u

r
ej(ωt−kr) (7.1)

where ρ0 is the density of air, c is the speed of sound, k = ω/c is wave number, a

is the sphere radius, u is the surface velocity and r is the distance. The derivation

of equation 7.1 is covered in your Principle of Acoustics notes.

The radiated pressure surrounding a monopole is shown in figure 7.1. An

important feature of this pressure is its dependence on frequency. Note that the

radiate pressure is a function of wave number k, which itself is a function of

frequency ω. Consequently, for a fixed surface velocity u, the radiated pressure p

from a monopole increases linearly with frequency.

Figure 7.1: Directivity of a monopole

Recalling the surface area of a sphere, V = 4πa2, the volume velocity of a
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monopole with radius a and surface velocity u is given by,

U = u4πa2. (7.2)

Substitution into equation 7.1 then yields,

p(r, t) =
jρ0ckU

4πr
ej(ωt−kr). (7.3)

Suppose a monopole were placed against an infinite baffle. The rear radiated

sound would be reflected by the baffle and redirected forwards. If the monopole

is place directly against the infinite baffle there would be no time delay in this

reflection, and so the radiate pressure would be in-phase and we get a doubling in

the sound pressure. Consequently, the radiation of an infinitely baffled monopole

is given by,

p(r, t) =
2A

r
e−jkr (7.4)

where,

A =
jρ0ckU

4π
ejωt. (7.5)

Equation 7.4 provides a reasonable model for the low frequency radiation of a

loudspeaker in an infinite baffle. At higher frequencies, where the drivers dimen-

sions become comparable to the radiating wave length, this model breaks down

and a more sophisticated approach is required.

7.2 Dipole

The acoustic dipole is the next simplest source we have. It is made up of two

monopoles separated by a small distance d radiating 90◦ out of phase. Its sur-

rounding pressure field can thus be written as,

φ

d

∆r

Figure 7.2: Geometrical configuration of a dipole

p(r, θ, t) =
A

r
ej(−kr) + (−)

A

r + ∆r(θ)
ej(−k(r+∆r(θ))) (7.6)

where r is the distance from leading monopole to the receiver position, and ∆r

is the small additional distance (positive or negative) travelled from the second

monopole, as in figure 7.2.

From figure 7.2 the additional distance ∆r can be rewritten in terms of the

monopole spacing, and the polar angle θ,

∆r = d cos θ. (7.7)

Figure 7.3: Directivity of a dipole.

Substitution into equation 7.6 then yields,

p(r, θ, t) =
A

r
e−jkr − A

r + d cos θ
e−jk(r+d cos θ) (7.8)

If we assume a far field radiation the attention due to distance for the two

monopoles will be approximately the same we can rewrite the above as so,

p(r, θ, t) =
A

r
e−jkr

(
1− e−jkd cos θ

)
. (7.9)

Note that the first term in equation 7.9 corresponds to that of a standard

monopole. The second term accounts for the change in directivity due to the

second out of phase monopole. Recalling Euler’s formula this directivity term can

be rewritten as,

1− e−jkd cos θ = 1− cos(kd cos θ) + j sin(kd cos θ). (7.10)
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Assuming the kd << 1, i.e. the spacing between the monopoles is small and/or

we consider low frequencies, the cos and sin functions can be replaced by their

small argument approximations cosx ≈ 1 and sinx ≈ x,

1− e−jkd cos θ ≈ 1− 1 + jkd cos θ = jkd cos θ. (7.11)

Substituting the above into equation 7.9 yields the dipole equation,

p(r, θ, t) =
A

r
e−jkr × jkd cos θ. (7.12)

The radiated pressure field of a dipole, as per equation 7.12, is shown in figure

7.3.

Figure 7.4: Radiation from a loudspeaker in free
space.

Equation 7.12 provides a reasonable model for the low frequency radiation of

a loudspeaker suspended in free space as in figure 7.4 (so that the front and rear

radiated sound can interfere). At higher frequencies, where the drivers dimensions

become comparable to the radiating wave length, this model breaks down and a

more sophisticated approach is required.

7.3 Piston

At very low frequencies the monopole and dipole provide reasonable models for the

radiation of sound from a loudspeaker. However, once the radiated wavelength

becomes comparable to the loudspeaker’s size, these simple models breakdown

and more complex ones are required.

Assuming that the motion of loudspeaker’s driver remains purely pistonic (i.e.

no wave motion) we can approximate its radiation using a rigid piston of equal

surface area.

Figure 7.5: Loudspeaker radiation using the far
field approximation compared against monopole
summation model

A rigid piston in an infinite baffle can be modelled mathematically by arrang-

ing a large number of monopoles across the surface of an imaginary piston and

summing together their contributions. By taking the limit as the number of

monopoles tends to infinity, this summation becomes an integral and we have,

p(r, θ, t) =

∫
S

A

r
e−jkrdS = A

∫
S

1

r
e−jkrdS (7.13)

where S is the surface area of the piston and A
r e
−jkr is the radiation of a single

monopole.

Figure 7.6: Bessel functions of the zeroth to fifth
kind

Evaluating the integral in equation 7.13 is not straight forward and so we

wont cover it here (you will cover piston radiation in more detail in Principles of

Acoustics). Assuming far field radiation, equation 7.13 can be solved to yield,

p(r, θ, t) =
jρ0cka

2u

2r
ej(ωt−kr)

[
2J1(ka sin θ)

ka sin θ

]
(7.14)
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where a is the radius of the piston, u is its surface velocity, and J1( ) is a first

order Bessel function of the first kind (see figure 7.6). The first group of terms

bear a resemblance to the monopole equation, it does not contain any angular

dependence. The second term is a directivity factor.

Figure 7.7: Functional dependence of directivity
function 2J(v)/v.

Shown in figure 7.5 are the on-axis (θ = 0) radiated pressures predicted using

a monopole summation (with 100 monopoles) and the far field approximation of

equation 7.14. From figure 7.5 we can see that the far field approximation does

not account for the detailed response at small distances (due to interference from

different parts of the driver). In the far field (r > 1 m) equation is in excellent

agreement with the monopole summation.

Many of the terms in equation 7.14 will already be familiar from the monopole

and dipole sources introduced above. The new term not yet introduced is the

Bessel function J1( ). Bessel functions are the canonical solutions of Bessel’s

differential equation. They are defined by their order, which can be specified by

any complex number. Integer and half integer orders are the most relevant to

us, as they represent solutions to the wave equation in cylindrical and spherical

coordinates. We wont go into any of the details about how they arise. We just

want to know what they look like.

Figure 7.8: Piston radiation at high frequency -
r = 0.15 m, f = 15000 Hz, ka = 19.4227.

Figure 7.9: Piston radiation at mid frequency -
r = 0.15 m, f = 3000 Hz, ka = 3.8845.

Figure 7.10: Piston radiation at low frequency -
r = 0.15 m, f = 150 Hz, ka = 0.1942.

Shown in figure 7.6 are the Bessel functions of order 0, 1, 2, 3, 4 and 5. In

appearance they look quite similar to decaying sinusoids. The directivity factor in

equation 7.14 depends not on the Bessel function alone, but on 2J1(v)/v, where

the argument v = ka sin θ depends on the angle θ.

7.3.1 Directivity

Shown in figure 7.8 is the function dependence of the directivity factor,

DF (ka, θ) =

[
2J1(ka sin θ)

ka sin θ

]
(7.15)

for a radius a = 0.15 m, at a frequency of 15000 Hz. Note that the argument

of the directivity factor ka sin θ varies between 0 and ka for θ = 0 → 90◦,

with 0 being its minimum value (sin 0◦ = 0) and ka being its maximum value

(sin 90◦ = 1). Due to the periodic nature sin θ, the directivity factor will begin

to repeat itself after 90◦. Therefore we need not evaluate the directivity beyond

ka. We call this the visible region.

From figure 7.8 we can see that between θ = 0◦ and 90◦ we get a series of

peaks and nulls. These correspond to lobes in our directivity function. A value

of one indicates complete radiation, a value of 0 indicated no radiation. E.g. at

ka sin θ ≈ 4 we get a minimal radiation from our piston. Note that the maximum

value of ka sin θ corresponds to the value of ka = 19.4227.

Shown in figure 7.9 is the directivity factor for the same piston at a frequency

of 3000 Hz. Notice that the maximum argument is now ka sin θ = 3.8845 (cor-

responding to θ = 90◦). Consequently, the main lobe has been stretched out and

we see only 1 peak.

Shown in figure 7.10 is the directivity factor for the same piston at a frequency

of 150 Hz. Notice that the maximum argument is now ka sin θ = 0.1942 (corre-

sponding to θ = 90◦). Here, the main lobe has been stretched out even further

such that it covers the entire range of θ. Figure 7.10 indicates that at low fre-

quencies the rigid piston radiates equally in all directions (i.e. is omni-directional),

much like a monopole.
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Whilst figures 7.8-7.10 show the directivity as a function of angle, it is more

common to plot them in polar form as in figure 7.11. Here we can clearly see a the

effect of beaming, and the introduction of side lobes, as frequency is increased.

Figure 7.11: Polar response at 150, 3000 and
15000 Hz for a piston with r = 0.15 m.

Figures 7.8-7.10 clearly illustrate the importance of ka in characterising the

directivity of the piston. The value ka defines the point in the directivity function

which corresponds to 90◦, and consequently to point at which the directivity starts

repeating. It defines the upper limit of our directivity function. By changing the

frequency or piston area we essentially shift this point up an down. For low

frequencies or small piston areas, the point ka is well within the main lobe and

we have a flat angular response. For high frequencies or large piston areas, the

point ka extends well beyond the main lobe, and we have a highly directional

response.

Substituting k = 2πf/c = 2π/λ, we have that

ka = 2π
a

λ
. (7.16)

Equation 7.16 demonstrates that ka may be interpreted as the ratio of piston

radius a to radiating wavelength λ. A value of ka >> 1 indicated a greater

radius than wavelength and a directional response. A value of ka << 1 indicated

a greater wavelength than radius and an omni-directional response.

7.4 Radiation Impedance

So we have discussed the radiation of acoustic waves due to a rigid piston. We

haven’t discussed the resistance to motion that this diaphragm will face when

oscillating. In a vacuum a piston can oscillate freely; there is no air to impede its

motion. When placed in free space (air included), the properties of the surround-

ing medium (e.g. its inertia) impede the piston’s motion. This phenomenon we

call acoustic impedance.
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As loudspeaker diaphragm oscillates it sees an impedance due to the surround-

ing air. This needs to be account for in our equivalent circuit model.

The radiation impedance of a rigid piston can be obtained by integrating the

specific acoustic impedance (radiated pressure over surface velocity, see equation

5.3), over the radiating surface area,

Zrad =

∫
S

p

u
dS. (7.17)

Evaluating the above integral is not straightforward and so we wont covered it in

detail here. The resulting expression is,

ZM,rad = ρ0cS [J1(2ka) + jX1(2ka)] (7.18)

where J1( ) is a Bessel function of the first kind, and X1( ) is the so called

Struve function. Equation 7.18 represents the radiation impedance of the piston

in the mechanical domain. To get the acoustic domain equivalent we must divide

by surface area squared,

ZA,rad =
ρ0c

S
[J1(2ka) + jX1(2ka)] . (7.19)

The frequency dependence of equation 7.19 is shown in figure 7.12. Note that

because the piston functions are functions of ka, the radiation load varies with

both frequency and driver size.

Figure 7.12: Frequency dependence of the radi-
ation impedance

Some broad features of the piston radiation impedance are:

• At high frequencies (ka > 2) J1( ) is close to one and X1( ) is small so

that the radiation load approximates the plane-wave characteristic value of ρ0c

scaled by S. So at high frequencies, the radiation load is mostly real and so

looks a little like that of an infinite pipe.

• At low frequencies (ka < 0.25) the radiation load is very small. But we need a

high load to generate a high pressure level. When the radiation load is small,

the volume velocity that is shoved through this thing doesn’t generate much

pressure (from ohms law, p = UZ).

Note that we are only interested in modelling the low frequency behaviour of

loudspeakers, i.e. for small values of ka. With this in mind we can take a first

order approximation of equation 7.19 (this is done by expanding equation 7.19 as

a Taylor series, and discarding all but the first term). Doing so yields,

ZA,rad ≈
ρ0ck

2

2π
+ jω

8ρ0

3π2a
. (7.20)

Equation 7.20 represents a first order approximation of the acoustic load faced

by a rigid piston in an infinite baffle. Note that the real part is proportional to

ω2 (k = ω/c), and that the imaginary part is linearly proportional to ω. These

are the low frequency trends observed in figure 7.12.

From equation 7.20 we can associate the real and imaginary parts of the ra-

diation impedance with resistive and inertial effects. The resistive term (i.e. the

real part) is quadratic in frequency. This terms describes the power dissipated.

This is what we want, i.e. to dissipate power as sound energy. The reactive term

looks quite similar to the impedance of a mass. It is proportional to frequency

and related to density and area. The reactance acts like a lump of air glued to
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the speaker cone. Its effect is to increase the apparent mass of the driver and in

turn lower the resonant frequency of the system.

From the above it is clearly advantageous to have a purely real load; more sound

would be dissipated and there would be no change in the resonant frequency of

the diaphragm.

7.5 Infinite Duct Acoustics

Before moving onto loudspeaker systems it is useful to consider the acoustics of

an infinite duct. Why exactly this is important/useful wont be clear until later

when we consider transmission line loudspeakers.

Let us assume that we have an acoustic wave travelling in our infinite duct. If

the wave length of sound is much greater than the cross section of the duct we

can assume that only plane waves are propagating (no standing waves across the

width or height of our duct). Also, because we are dealing with an infinite duct,

there will be no reflections of any sort, and so we can assume our wave travels in

only one direction. An acoustic plane wave travelling in one direction is described

by the equation,

p+ = p0e
j(ωt−kx). (7.21)

We are interested in finding the acoustic impedance as seen by this travelling

wave.

We begin by recalling Euler’s equation which related the spatial gradient of

pressure to the time derivative of particle velocity,

dp

dx
= −ρ0

du

dt
. (7.22)

Note that Euler’s equation can be interpreted as different form of Newton’s 2nd

Law F = ma. A pressure gradient generates a force, density is related to mass,

and the time derivative of particle velocity is acceleration.

Integrating both sides of Euler’s equation with respect to time yields the fol-

lowing equation for velocity,

u = − 1

ρ0

∫
dp+

dx
dt. (7.23)

Now substituting in our plane wave,

u = −p0

ρ0

∫
d

dx
ej(ωt−kx)dt (7.24)

evaluating the derivative,

u = −jkp0

ρ0

∫
ej(ωt−kx)dt (7.25)

and then the integral,

u = − jkp0

jωρ0
ej(ωt−kx) (7.26)

we arrive at an equation relating particle velocity to pressure,

u− k

ωρ0
p+ = − 1

ρ0c
p+. (7.27)

Recall that the ratio of pressure to particle velocity is the specific acoustic impedance,

Zs =
p+

u
= ρ0c. (7.28)
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Through the definition of volume velocity U = uS, the standard acoustic impedance

can be determined as so,

ZA =
p+

U
=
ρ0c

S
. (7.29)

Equation 7.29 represents the acoustic impedance as seen by a travelling plane

wave in an infinite duct. Why is this interesting? It is purely resistive (no imag-

inary parts!). This means that attaching an infinite pipe to a loudspeaker will

have no effect on its resonant frequency (this is controlled by the reactive terms

in its impedance). We will use this notion later when we look at transmission line

loudspeaker systems.



8 Loudspeaker Systems

MAD, CAD, RAD

MAf , RAf MAb, RAb

UD

Figure 8.1: Infinite baffle enclosure.

Now that we have introduced appropriate sound radiation models we are in a

position to begin modelling loudspeaker systems. We will begin by considering

the simple case of an infinite baffle, before introducing sealed and vented cabinet

designs.

8.1 Infinite Baffle

The infinite baffle is the simplest loudspeaker system to consider. Although the

construction of an infinite baffle is somewhat impractical, a decent approximation

can be obtained by housing a loudspeaker driver in a large wooden panel, placed

in an anechoic room. In fact, it is this sort of configuration that loudspeaker

drivers are typically characterised in.

When placed in an infinite baffle the loudspeaker driver is loaded by the acoustic

free space at the front and rear. We have derived this acoustic loading for a

radiating piston in the low frequency limit, see equation 7.20. The two terms

in equation 7.20 can be associated with the resistive and inertial effects of the

air surrounding the loudspeaker. In our equivalent circuit these effects can be

modelled using an equivalent resistor and inductor, as in figure 8.2.

ZAb

ZAf

RAb MAb

RAf

MAf

Figure 8.2: For an infinite baffle the arbitrary
acoustic loads are replaced by an equivalent re-
sistor and inductor.Noting that the radiation load on the front (Af) and rear (Ab) are identical,

we have

RAb = RAf =
ρ0ck

2

2π
(8.1)

and

MAb = MAf =
8ρ0

3π2a
. (8.2)

Substituting the infinite baffle radiation load (see figure 8.2) into the full equiv-

alent circuit model (see figure 6.12) leads to the circuit in figure 8.3. This circuit

models the low frequency behaviour of a loudspeaker in an infinite baffle.

Recall that at low frequencies the impedance of a capacitor is high. Conse-

quently, across the parallel RC section the current will flow primarily through the



66 microphone and loudspeaker design

V Bl
SD(RE+jωLE)

U

RAD MAD

CAD
RAb MAb

RAf

MAf

(BL)2

S2
DRE

S2
DLE

(Bl)2 p

Figure 8.3: Complete equivalent circuit including
radiation loading due to infinite baffle.

resistor element, allowing us to neglect the parallel capacitance. Similarly, at low

frequencies the contribution of jωLE to the voltage source will be negligible com-

pared to that of the DC resistance RE . With the above in mind figure 8.3 can

be simplified to that of figure 8.4 (which now neglects the voice coil inductance

LE).

V Bl
SDRE

U

(Bl)2

S2
DRE RAD MAD

CAD
RAb MAb

RAf

MAf

p

Figure 8.4: Simplified complete equivalent circuit
including radiation loading due to infinite baffle.

For ease of analysis it is convenient to further simplify figure 8.3 by gathering

like terms. For the infinite baffle loudspeaker we define the total ‘speaker’ damping

by adding together the damping contributions from the electrical ((Bl)2/S2
DRE),

mechanical (RAD), and acoustic domains (2RAf ),

RAS =
(Bl)2

S2
DRE

+RAD + 2RAf . (8.3)

As above, we can define the total speaker mass as,

MAS = MAD + 2MAf . (8.4)

Finally, we have the total speaker compliance,

CAS = CAD. (8.5)

More generally we can define the total acoustic mass, damping and compliance,

MAT , RAT and CAT , which describe the total mass, damping and compliance in

a loudspeaker system. For an infinite baffle loudspeaker the only contributions to

the mass, damping and compliance are from the speaker itself, and so MAT =

MAS , RAT = RAS and CAT = CAS . This will not be the case for a sealed or

vented design.

Note that by adding an infinite baffle and acoustic loading we introduce addi-

tion mass and damping. The compliance however is unaffected; the total acoustic
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V Bl
SDRE

U RAT
CAT

MAT

Figure 8.5: Complete equivalent circuit including
radiation load using total acoustic quantities.

compliance is simply the mechanical suspensions compliance in the acoustic do-

main. Using the newly defined total acoustic mass, compliance and damping, a

new equivalent circuit can be formed as in figure 8.5.

To predict a baffled loudspeaker’s radiated sound we need to first determine

the driver’s volume velocity. This is then substituted into the rigid piston radiation

model (equation 7.14) to predict the radiated pressure. To determine the driver’s

volume velocity we simply note that our equivalent circuit has been formulated

according to the impedance analogy. As such, volume velocity is analogous to

current. Find the volume velocity is therefore equivalent to finding the current

through our equivalent circuit.

From Ohm’s Law we know that V = iZ, or,

V Bl

SDRE
= UZT (8.6)

where ZT is the total impedance of the circuit. Since figure 8.5 is a series RLC

circuit the total impedance is a straightforward sum. The volume velocity is then

given by,

U =
V Bl
SDRE

RAT + jωMAT + 1
jωCAT

. (8.7)

It is convenient to rearrange equation 8.7 by factoring out jωMAT from the

denominator and grouping with the voltage term,

U =
V Bl

SDREjωMAT

[
1

1 + RAT
jωMAT

+ 1
jωjωMATCAT

]
. (8.8)

Equation 8.8 can be parametrised by recalling the relations, ω2
s = 1/MASCAS

and QTS/ωc = MAS/RAS from our analysis of RLC circuits and mass spring

systems,

U =
V Bl

SDREjωMAS

 1

1 + 1
QTS

(
ωs
jω

)
+
(
ωs
jω

)2

 . (8.9)

Figure 8.6: Volume velocity (black) expressed as
the product of two terms: first order low pass
filter (green) and second order high pass filter
(red).

The volume velocity is now expressed as the product of two terms. The first

term is inversely proportional to frequency and looks similar to first order low-pass

filter response. The second term corresponds to a 2nd order high pass filter. For

convenience we can define,

E(jω) =

 1

1 + 1
QTS

(
ωs
jω

)
+
(
ωs
jω

)2

 . (8.10)

The characteristics of the low pass (green) and high pass (red) terms in equa-

tion 8.9 are shown in figure 8.6. When multiplied together they yield a volume
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velocity with a resonant response shape, as expected given that the driver is mod-

elled as a mass on a spring. The volume velocity in figure 8.6 has been modelled

using a Butterworth response with QTS = 0.707.

Figure 8.7: Volume velocity (orange) vs. radia-
tion impedance of piston (blue)

Figure 8.8: Radiated pressure from infinite baffle.

The shape of the filter response E(jω) depends entirely on the Q-factor QTS
and the resonance frequency ωs. The Q-factor QTS corresponds to that of the

baffled loudspeaker, and from figure 8.5 is given by,

QTS =

(
(Bl)2

S2
DRE

+RASm

)−1√
MAS

CAS
(8.11)

or

QTS = ωs
MAS

RAS
(8.12)

where RASm = RAD + 2RAf is used to denote the acoustic damping due to

the speaker (i.e. the mechanical damping and air load, neglecting the electrical

damping), and RAS is the speakers total acoustic damping including the electrical

damping. It is often convenient to express the total Q-factor in terms of the

electrical and mechanical/acoustic damping separately. This can be done by

defining the mechanical and electrical Q-factors,

QTM =
1

RASm

√
MAS

CAS
(8.13)

and

QES =

(
(Bl)2

S2
DRE

)−1√
MAS

CAS
. (8.14)

Note that QTS includes the effect of air loading on the driver. The total Q-factor,

as in equation 8.11, can then calculated using the produce over sum rule as so,

QTS =
QTMQES
QTM +QES

. (8.15)

8.1.1 Velocity to Pressure Conversion

Having determined the driver’s volume velocity (see equation 8.9) we are now

able to predict the radiated acoustic pressure using the piston equation,

p(r, θ, t) =
jρ0ωU

2πr
ej(ωt−kr)

[
2J1(ka sin θ)

ka sin θ

]
(8.16)

where we have substituted the volume velocity U = πa2u in place of the surface

velocity u, and replaced k = ω/c. Assuming an on-axis response (so we can

ignore the directivity factor) and substituting in the volume velocity we obtain,

p(r, θ, t) =
jρ0ω

2πr

V Bl

SDREjωMAS
E(jω). (8.17)

Figure 8.9: Frequency response in dB of an infi-
nite baffle loudspeaker with varying Q-factors.

The radiation impedance (jρ0ω/2πr) and volume velocity terms in equation

8.17 are shown in figure 8.7. Notice that below the resonant frequency of the

driver both terms increase with a 6dB/oct slope. Above resonance the volume ve-

locity begins to decrease with a -6dB/oct slope. When combined this downward

sloping volume velocity counter acts the upwards sloping radiation impedance,

leaving a flat frequency response. This is exactly what we want from a loud-

speaker. Below the driver resonance the two slopes combine to give a 12 dB/oct

slope.
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Notice that the frequency variable ω in the piston radiation term and initial

volume velocity term will cancel with one another,

p(r, θ, t) =
ρ0V Bl

2πrSDREMAS
E(jω). (8.18)

Consequently, the only frequency dependent term in equation 8.18 is that of the

2nd order high pass filter E(jω). The remaining terms are simply constants

associated with the sensitivity of the loudspeaker (e.g. if we increase the mass

MAS , we decrease the radiated pressure). Hence, to evaluate the frequency

response of a loudspeaker we only need to consider the high pass filter E(jω).

Noting that the flat response region occurs only after the driver’s resonant

frequency (as the volume velocity begins to decrease with increasing frequency)

we arrive at our first important design concept - the lower the driver’s resonant

frequency the lower the flat response region extends.

It is important to remember that figure 8.8 represents just one of many avail-

able response shapes. Shown in figure 8.9 are the response shapes obtained for a

QTS varying between 0.5 and 1.3 in increments of 0.1. The effect of Q-factor on

loudspeaker performance will be treated in more detail when we consider sealed

and vented cabinets.

8.1.2 Electrical Impedance

Before we move onto the sealed cabinet loudspeaker lets consider the electrical

impedance of a loudspeaker in an infinite baffle. Recall our equivalent circuit

in figure 6.5. To determine the acoustic impedance (and from it the volume

velocity) of our loudspeaker we referred all components across to the acoustic

domain. To do this we scaled the electrical and mechanical elements by 1/(Bl)2

and S2
D. To obtain the electrical impedance we must refer all components across

to the electrical domain. This means scaling the acoustic and mechanical domain

by 1/S2
D and (Bl)2. The resulting circuit is shown in figure 8.10.

V

p

RE LE

(Bl)2

RM
MM

(Bl)2 (Bl)2CM
(Bl)2

S2
DZAb

(Bl)2

S2
DZAf

Figure 8.10: Equivalent circuit with all elements
referred to the electrical domain.

To determine the electrical impedance of the loudspeaker driver we must find

the total impedance of figure 8.10. To do so it is convenient to group together

the electrical and mechanical/acoustic elements such that the total electrical

impedance is given by,

ZET = ZE + ZMS (8.19)

where,

ZE = RE + jωLE (8.20)
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and

ZMS =

 1
(Bl)2

jωMM

+
1

(Bl)2

RM

+
1

jωCM (Bl)2
+

1
1
2

(Bl)2

S2
DjωMAf

+
1

1
2

(Bl)2

S2
DjωRAf

−1

.

(8.21)

Note that we are considering an infinite baffle loading, and so the front and rear

acoustic loads are the same. Since they are in parallel they can be combined to

a single elements with half the impedance. The acoustic mass and damping can

then be combined with the mechanical elements as so: MMT = MM +2S2
DMAf ,

and RMT = RM + 2S2
DRAf . Equation 8.21 can now be rewritten as,

ZMS =

(
jωMMT

(Bl)2
+
RMT

(Bl)2
+

1

jωCM (Bl)2

)−1

. (8.22)

We are interested in rearranging the above into a more convenient form. We start

by factoring RMT /(Bl)
2 out of the denominator,

ZMS =
1(

jωMMT

RMT
+ 1 + 1

jωCMRMT

)
RMT
(Bl)2

. (8.23)

Defining the new variable RES = (Bl)2/RMT , and multiplying top and bottom

by jωCMRMT , we obtain,

ZMS = RES
1(

jωMMT

RMT
+ 1 + 1

jωCMRMT

) jωCMRMT

jωCMRMT
, (8.24)

and subsequently, Defining the new variable RES = (Bl)2/RMT , and multiplying

top and bottom by jωCMRMT , we obtain,

ZMS = RES
jωCMRMT

((jω)2MMTCM + jωCMRMT + 1)
. (8.25)

Now we recall that:

ω2
c = 1/CMMMT (8.26)

and

QMS/ωc = MMT /RMT → QMSωc = 1/CMRMT . (8.27)

Substitution into ZMS then yields,

ZMS = RES

jω
QMSωc(

(jω)2

ω2
c

+ jω
QMSωc

+ 1
) . (8.28)

From equations 8.19, 8.20 and 8.28 total electrical impedance of the a loudspeaker

driver (in an infinite baffle) is given by,

ZET = RE + jωLE +RES

jω
QMSωc(

(jω)2

ω2
c

+ jω
QMSωc

+ 1
) . (8.29)

The electrical impedance from equation 8.29 is plotted in figure 8.11. It exhibits

all of the features we see in an experimentally obtained impedance. At high fre-

quencies the voice coil inductance LE becomes the dominant source of impedance

(note that it was the inductor impedance that we neglected between figures 8.3

and 8.4), whilst at very low frequencies the only term remaining is the voice coil
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resistance RE (i.e. the nominal DC resistance of the loudspeaker). In the vicinity

of the driver resonance a peak in the electrical impedance is observed due to the

rightmost term. Exactly at resonance (ω = ωc) this complex term reduces to 1,

and the total impedance is ZET ≈ RE +RES .

Figure 8.11: Electrical impedance of a moving
coil loudspeaker in an infinite baffle.

Note that the peak electrical impedance occurs at the driver resonance, i.e.

when the mechanical impedance is a minimum. At resonance the driver velocity is

a maximum (because its impedance is small). The large driver velocity induces a

back EMF in the voice coil that counters the applied current, and so the electrical

impedance is increased.

8.1.3 Theile-Small Parameters

In order to use our equivalent circuit and model the behaviour of a loudspeaker

we need to know its electrical, mechanical and acoustical properties. In particular,

from figure 8.10 we can identify the following parameters:

MMT Mass of the diaphragm/coil (including acoustic load) in kilograms

RMT The mechanical resistance of a driver’s suspension (including acoustic

load)

CM Compliance of the driver’s suspension, in meters per newton

SD Projected area of the driver diaphragm, in square meters

LE Voice coil inductance measured in millihenries

RE DC resistance of the voice coil, measured in ohms

Bl The product of magnet field strength in the voice coil gap and the

length of wire in the magnetic field
These fundamental parameters are often quite hard to measure directly. Many

of the above quantities are related through other quantities, such as resonant

frequency ωc and Q-factor QTS , which are directly measurable. Based on this

it is convenient to characterise the low-frequency properties of a loudspeaker by

what are known as the Theile-Small parameters (named after Neville Theile and

Richard Small; two pioneers of loudspeaker design). The Theile-Small parameters

are:
RE Nominal DC resistance

QES Electrical Q-factor (due to electrical damping only)

QTM Mechanical Q-factor (due to the mechanical damping/acoustic load-

ing only)

fs Free suspension driver resonance

SD Driver’s effective surface area

VAS Equivalent suspension volume
where VAS represents the volume of air having the same compliance as the

suspension,

VAS = CADρ0c
2 = CMS

2
Dρ0c

2. (8.30)

Based on the above Theile-Small parameters we can recover any of the funda-

mental loudspeaker parameters using the equations derived above. For example,

the mechanical compliance can be obtained by,

CM =
VAS

S2
Dρ0c2

. (8.31)

Once the mechanical compliance is known, MMT can be found by,

MMT =
1

ω2
sCM

. (8.32)
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The mechanical damping RMT can then be found from the mass, compliance

and mechanical Q-factor,

RMT =
1

QMS

√
MMT

CM
. (8.33)

Similarly the force factor Bl can be found as,

(Bl)2 =
RE
QES

√
MMT

CM
. (8.34)

The measurement of the Theile-Small parameters is covered as part of your

first Loudspeaker Lab. For more details please see the lab handbook.

8.2 Sealed Cabinet

So far we have only considered loudspeakers mounted in an infinite baffle. Clearly,

infinite baffles are somewhat impractical (expensive and take up a lot of room).

Recall that the purpose of the infinite baffle was simply to separate the front and

rear radiated sound. An alternative approach is to simply mount the loudspeaker

in a sealed cabinet. This way the rear radiated sound is kept within the cabinet,

and any destructive interference avoided.

The sealed cabinet is the simplest loudspeaker design. They were first intro-

duced in the 1940’s and by the 1950’s they had become a popular choice in HiFi.

A key feature of a sealed cabinet design is that they use a relatively compliant

loudspeaker driver. This enables the sealed cabinet itself to control the loud-

speaker response; the cabinet adds a stiffness to the mass-spring behaviour of the

loudspeaker driver. To design a sealed cabinet loudspeaker we must modify our

infinite baffle loudspeaker circuit (see figure 8.3) to account for the modified rear

acoustic load (due to the cabinet). CAb, RAb

MAD, CAD, RAD

MAf1 , RAf1

UD

Figure 8.12: Sealed enclosure.

We saw previously that a cavity, or sealed volume of air, possess an acoustic

compliance. By introducing a sealed cabinet, the loudspeaker’s rear acoustic load

must now contain a compliant term that describes the ‘springiness’ of the air

cavity, alongside any additional inertial effects. As in the infinite baffle case there

will also be an inertial and resistive contribution from the air loading within the

cabinet. A further additional damping will be introduced if any damping material

(e.g. mineral wool, foam, etc.) is put in the cavity. As such, the rear acoustic

load ZAb is given by,

ZAb = RAb + jωMAb +RAB + jωMAB +
1

jωCAB
(8.35)

where RAb and MAb describe the resistive and inertial air loading, and RAB ,

MAB and CAB describe the effect of the cabinet.

The added resistance due to damping material in the cavity RAB is often

difficult to quantify and so, for now, we can ignore it. A further simplification

can be made by noting that for a small volume, such as a sealed cabinet, the

impedance contribution of the compliance CAB is far greater than that of any

additional inertial loading MAB ,

1

jωCAB
=

ρ0c
2

jωVB
>> jωMAB . (8.36)

We can therefore neglect the inertial and resistive cabinet load, and approximate

the rear loading as a capacitance in series with the infinite baffle load, as in
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ZAb

ZAf

RAb MAb

CAB

RAf

MAf

Figure 8.13: Front and rear acoustic loading for
a sealed cabinet

figure 8.13. Note that a capitalised B subscript is used here to denote the

box compliance. Based on the above approximation, our full equivalent circuit

becomes that of figure 8.14.

V Bl
SDRE

U

(Bl)2

S2
DRE RAD MAD

CAD
RAb MAb

CAB

RAf

MAf

p

Figure 8.14: Complete equivalent circuit of a
sealed cabinet loudspeaker including front and
rear radiation loading.

By grouping like terms figure 8.14 may be reduced to the simple RLC circuit

shown in figure 8.15. Note that this circuit is identical in form to that of figure

8.5 (i.e. the infinite baffle case), the only difference are the values of the total

acoustic components.

The introduction of a sealed cabinet, assuming no additional damping is in-

troduced, has a negligible effect on the resistive and inertial loading of the loud-

speaker. The greatest change comes from the additional compliance of the cavity.

As such, we can assume that the total acoustic mass and damping is the same

as in the infinite baffle case, i.e.,

MAT ≈MAS (8.37)

and

RAT ≈ RAS . (8.38)

The total acoustic compliance however, has changed considerably. From figure

8.14 we have two series compliances. Using the product over sum rule their

combined compliance is,

CAT =
CASCAB
CAS + CAB

(8.39)

where CAS = CAD is the compliance of the mechanical suspension (in acoustic

units), and CAB is the acoustic compliance of the sealed cabinet, calculated as

per equation 5.25.

Although we have decided to ignore the effect of added cabinet damping,

it is important to acknowledge its effect on the response of a sealed cabinet

loudspeaker. In general, an increase in the damping of a system decreases the

Q-factor of its resonance. This will lead to a reduced level at the low frequency

cut-off and a more gradual roll-off in its frequency response.
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V Bl
SDRE

U RAT
CAT

MAT

Figure 8.15: Complete equivalent circuit includ-
ing radiation load using total acoustic quantities.

From figure 8.15 we can identify the volume velocity (equivalent to current)

as,

U =
V Bl
SDRE

RAT + jωMAT + 1
jωCAT

. (8.40)

Given that figure 8.15 is identical in form to figure 8.5, it is of no surprise that

the volume velocity of the sealed loudspeaker driver is of the same form as the

infinite baffles. However, from equations 8.37-8.39 we can see that, unlike the

total acoustic mass and damping, the total acoustic compliance is different to

that of an infinite baffle. The added cabinet compliance will change the resonant

frequency of the system,

ωc =

√
1

MATCAT
≈
√

1

MASCAT
(8.41)

and consequently the Q-factor since,

QTC =
1

RAT

√
MAT

CAT
≈ 1

RAS

√
MAS

CAT
(8.42)

or

QTC =
ω2
cMAT

RAT
≈ ω2

cMAS

RAS
. (8.43)

Note that ωc and QTC are the resonant frequency and Q-factor of the sealed

cabinet, and that ωs and QTS are the resonant frequency and Q-factor of the

driver in an infinite baffle (i.e. in free space).

Equation 8.43 can be used to derive a very useful relation for sealed loudspeak-

ers. If we divide both sides by ω2
c ,

QTC
ωc
≈ MAS

RAS
. (8.44)

and recall the Q-factor of an infinite baffle loudspeaker (see equation 8.12),

QTS
ωs

=
MAS

RAS
, (8.45)

it is clear that,
QTC
ωc
≈ QTS

ωs
. (8.46)

Equation 8.46 relates the resonant frequency and Q-factor of a free driver, and a

sealed cabinet. Using this equation we can obtain the Q-factor of a sealed cabinet

loudspeaker, provide the driver parameters and the resonance frequency of the

sealed cabinet (from equation 8.41) are known.

Like the infinite baffle volume velocity, equation 8.40 can be parametrised as,

U =
V Bl

SDREjωMAT
E(jω) (8.47)
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where the frequency response term E(jω) is given by,

E(jω) =

 1

1 + 1
QTC

(
ωc
jω

)
+
(
ωc
jω

)2

 . (8.48)

Equation 8.47 can then be substituted into equation 7.14 for piston radiation. In

doing so we observe the same first order high pass/low pass cancellation, leading

to the radiated pressure,

p(r, θ, t) =
ρ0V Bl

2πrSDREMAT
E(jω). (8.49)

Like equation 8.18, the only frequency dependent term in equation 8.49 is the

frequency response E(jω). The remaining terms are constants related to the

sensitivity of the loudspeaker.

The process of designing a sealed cabinet loudspeaker involves choosing a

particular response shape for E(jω) (characterised by its two parameters ωc and

QTC), and then finding an appropriate driver and/or cabinet to achieve this

response shape. In some cases the driver will be specified before hand and then

the appropriate cabinet must be found. Alternatively, the cabinet design may be

restricted to a particular volume, and so an appropriate driver must be found. The

process of designing a sealed cabinet loudspeaker is often referred to as ’choosing

an alignment’.

8.2.1 Choosing an Alignment

Shown in figure 8.16 are a selection of the possible frequency response shapes

available from a sealed cabinet design. The response shapes shown are for a fixed

fc ≈ 80 Hz with a QTC varying between 0.4 and 2. There are two important

regions in the response shape: the cut-off and the reference region. The reference

region is the region where the response shape flattens out and tends to a constant

value. This is the region we want out loudspeaker to operate in as it will give

us the flattest overall frequency response. The cut-off region lies between the

reference region and the low frequency roll off. When choosing an alignment it

Figure 8.16: Frequency response shape for a
sealed cabinet with fc ≈ 80Hz and QTC varying
between 0.4 and 2.

is the cut-off region that we control over. We are able to move it up and down

the frequency axis (e.g. by making the box stiffer/more compliant or the driver

heavier/lighter), but also increase or decrease its amplitude (by adjusting the
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amount of damping and therefore the Q-factor). The transition from reference

region to -12 dB/oct roll-off depends on the characteristics of the cut-off region.

A quicker transition is obtained when the Q-factor is higher, albeit at the cost of a

low frequency boost. This boost, although undesirable if we are trying to achieve

a flat frequency response, can be used to increase the perceived bass response of

smaller loudspeakers. A popular, and worth remembering, Q-factor is that of the

Butterworth alignment, QTC = 0.707.

The Butterworth alignment is also called the maximally flat frequency response.

It is the flattest possible frequency response we can achieve for our sealed cabinet

loudspeaker. If the Q-factor is increased by any amount (QTC > 0.707), the

frequency response will have a gain greater than 0. Decreasing the Q-factor by

any amount (QTC > 0.707) will introduce a more gradual roll-off.

It is important to note that whilst our equivalent circuit model will predict the

reference region extending to infinity, this is not what happens in reality. Re-

member, our entire equivalent circuit approach is based on the lumped parameter

assumption. At high frequencies this is no longer applicable (we start to get wave

motion, e.g. cone break-up). Furthermore, we have chosen to neglected the influ-

ence of the voice coil’s inductance, and are modelling radiation impedance using

a first order approximation. As such, we are only able to rely on our equivalent

circuit up to the limit of ka ≈ 1.

8.2.1.1 Transient Response

It is important when choosing an alignment to remember that the Q-factor not

only effects the frequency response shape, but also the system’s transient re-

sponse. A high Q-factor system will ’ring on’ past the any transient attack, a low

Q-factor system will decay much faster. Shown in figure 8.17 are the (normalised)

transient responses of a loudspeaker driver with varying Q-factors. Note that once

Figure 8.17: Transient response of a sealed cab-
inet loudspeaker for different Q-factors

the Q-factor goes below 0.5, the system becomes over damped and no oscillation

is observed. Achieving a Q-factor of 0.5 (critically damped) will give the fastest

possible transient response, but at the cost of a poorer frequency response. If

the Q-factor obtained is quite large, say 1.4, we may get a superior frequency re-

sponse, but we also get a longer transient decay. This prolonged decay is mostly

producing one single note (corresponding to the peak in our frequency response).

We don’t really want this. A common Q-factor for a sealed cabinet is around 1.

This gives us a best of both worlds.
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8.2.1.2 Infinite Baffle vs. Sealed Cabinet

Here is a quick recap/comparison of the infinite baffle loudspeaker vs. its sealed

cabinet counter part.

• Infinite Baffle:

– MAT = MAS = MAD + 2MAf - The total acoustic mass is the sum of the

driver mass (in acoustic units) and the front and read inertial loading (both

the same).

– CAT = CAS = CAD - The total acoustic compliance is entirely that of the

mechanical suspension (in acoustic units).

– ωs =
√

1
CAD(MAD+2MAf ) - Free driver resonance.

– QTS = ωsMAS

RAS
- Free driver Q-factor.

• Sealed Cabinet:

– MAT = MAD + MAf + MAb - The total acoustic mass is the sum of the

driver mass (in acoustic units) and the front and read inertial loading (not

necessarily the same, often we ignore the rear inertial loading).

– CAT = CADCAB
CAD+CAB

- The total acoustic compliance is the combined effect

of the mechanical suspension (in acoustic units) and the cavity compliance.

– ωc =
√

1
CADCAB
CAD+CAB

(MAD+MAf+MAb)
- Sealed cabinet driver resonance.

– QTC = ωcMAT

RAT
- Sealed cabinet Q-factor.

Under the assumptions that a) the change in inertial loading between the infinite

baffle and sealed cabinet is negligible (MAT = MAS), and b) that the cabinet

doesn’t add any additional damping (RAT = RAS), the sealed and infinite baffle

Q-factor and resonant frequencies as related through the equation,

QTC
ωc
≈ QTS

ωs
. (8.50)

8.2.2 Example Design Procedure

The design procedure for a sealed cabinet will be demonstrated by way of an

example. Suppose we are supplied with a driver whose Thiele-Small parameters

are:

fs =45 Hz (8.51)

QTS =0.35 (8.52)

MMD =0.011 kg (8.53)

SD =π

(
0.165

2

)2

= 0.021 m2 (8.54)

What volume cabinet is required to achieve a Butterworth alignment? And what

frequency is the sealed cabinet’s resonant frequency?

From equation 8.46 we can calculate the coupled resonance as,

fc =
QTC
QTS

fs =
0.707

0.35
× 45 = 90.9 Hz. (8.55)
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The volume of a sealed cabinet VAS is related to its compliance CAB as per

equation 8.30,

V = CABρ0c
2. (8.56)

To determine the box compliance we must first determine the total compliance

required to obtain a resonant frequency of 90.9 Hz,

(2π90.9)2 =
1

MATCAT
→ CAT =

1

(2π90.9)2 × 24.06
= 1.27 · 10−7 m5/N

(8.57)

where the total acoustic mass is calculated using (note that for simplicity we have

chosen to ignore inertial air loading),

MAT =
MMD

S2
D

= 24.06 kg/m4. (8.58)

The equation for total acoustic compliance can now be rearranged to find the

necessary box compliance,

CAT =
CASCAB
CAS + CAB

→ CAB =
CASCAT
CAS − CAT

= 1.68 · 10−7 m5/N, (8.59)

where the driver’s acoustic suspension compliance CAS is obtained from the free

driver resonance,

ω2
s =

1

CASMAT
→ CAS =

1

ω2
sMAT

= 5.19 · 10−7 m5/N. (8.60)

Substituting CAT = 1.68 · 10−7 into equation 8.56 yields the volume,

(1.68 · 10−7)× 1.21× 3432 = 0.024 m3. (8.61)

So, for the driver parameters specified, the cabinet volume required to achieve

a Butterworth response is 24 L. The resonant frequency of this speaker will be

90.9 Hz.

The frequency range over which a loudspeaker is considered to have a flat

frequency response is often specified from its lower -3dB point upwards. Once

the Q-factor and resonant frequency of the sealed cabinet loudspeaker are known,

the -3dB frequency can be determined as follows.

Note that the -3dB point corresponds to the frequency at which power is half

its maximum value, |E(jω)|2 = 1/2, or

1

2
=

∣∣∣∣∣∣∣
1

1 + 1
QTC

(
ωc

jω3dB

)
+
(

ωc
jω3dB

)2

∣∣∣∣∣∣∣
2

. (8.62)

Considering the equality between denominators,

2 =

∣∣∣∣∣1 +
1

QTC

(
ωc

jω3dB

)
+

(
ωc

jω3dB

)2
∣∣∣∣∣
2

, (8.63)

and evaluating the magnitude square of the above leads to,

2 =

[
1−

(
ωc
ω3dB

)2
]2

+

[
1

QTC

(
ωc
ω3dB

)]2

. (8.64)
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On expanding the brackets we get,

1 =

(
1

Q2
TC

− 2

)(
ωc
ω3dB

)2

+

(
ωc
ω3dB

)4

. (8.65)

For a Butterworth alignment, QTC = 0.707 = 1/
√

2. Substituting this into the

above leads to,

1 =

(
ωc
ω3dB

)4

. (8.66)

Taking the forth-root of both sides then yields,

ω3dB = ωc. (8.67)

This is a unique property of the Butterworth alignment, the -3dB cut-off is equal

to the resonant frequency. For other alignments the -3dB cut-off and resonant

frequency do not coincide.

8.2.3 General design principles

It is important to note that some drivers just are’nt suitable for a sealed enclosure,

for example because the box volume required is prohibitively large. There are

some particular attributes that are needed for a sealed box. Here are some rules

of thumb:

1) The compliance ratio (α = CAB/CAS) should be more than 3, this ensures

that the size of the box is not too large (a large volume VAB gives us a small

α)

2) The compliance ratio should be less than 10, this ensures that the mechanical

suspension is not too compliant (a very compliant/flexible suspension gives

us a large α). If the suspension is too compliant the system might become

mechanically unstable. For a reasonable sized cabinet, a large α means a highly

compliant driver.

3) The resonant frequency of the driver needs to be lower that the total reso-

nance. When we add a cabinet we increase the stiffness and so increase the

resonance frequency. In general for a sealed box design we want a driver with

a low resonant frequency, so as to achieve a low system resonance. As a rule

of thumb the free driver resonance should be less than half the desired system

resonance (otherwise we will have to make the cabinet unrealistically small to

achieve the necessary increase in stiffness)

Having a low resonant frequency means that we need a large cone mass. This

reduces the total velocity amplitude (remember we factored out a mass term from

our volume velocity). To compensate for this poor sensitivity we have to have

long excursion limits so that the driver can displace a large enough volume of air

at low frequencies.

Richard small suggested a good rule of thumb for determining if a driver could

be used for sealed cabinet, he called it the efficiency bandwidth product. Its

defined simply as the free driver resonance over the free driver Q factor,

EBP =
fs
QTS

. (8.68)
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It’s a single number that shows the trade-off between the efficiency and band-

width of a driver. These two parameters are inversely related: for maximum

possibly efficiency, the bandwidth must be narrow; for maximum possible band-

width, the efficiency then becomes less.

An EBP of 50 or less indicates a low resonance compared with the Q factor.

This is what we want for a sealed box driver. An EBP of around 100 is more

suitable for vented cab (which will get an extended bass response due to the

added vent!). A driver with an EBP between 50 and 100 can be used in either

sealed or vented designs.

8.3 Transmission Line

Before we move onto the vented cabinet design, we will very briefly consider what

is called a transmission line enclosure. It turns out that we have already done

all the hard work, and so the analysis of a transmission line loudspeaker is quite

straightforward.

Figure 8.18: Transmission line enclosure.

So what is the point behind a transmission line enclosure? In its simplest form,

we replace the closed cavity of the sealed cabinet with a long duct (usually filled

with some absorptive material). This duct is designed so that the rear radiation

is completely dissipate so that a) there is no interference with the radiation from

the main driver and b) there are no standing waves within the duct. How do we

model this sort of enclosure?

The front loading is unchanged and so will be the same as our sealed cabinet.

The rear loading however, is no longer that of a sealed cabinet. So we no longer

have an acoustic compliance acting on the driver. Instead we have what appears

to the driver as an infinite duct. We have already derived the impedance of an

infinite duct, and see that it is purely resistive. So what effect does this have one

our equivalent circuit model?

V Bl
SDRE

U

(Bl)2

S2
DRE RAD MAD

CAD
RAb MAb

RAf

MAf

p

Figure 8.19: Complete equivalent circuit of a
transmission line loudspeaker including front and
rear radiation loading.

The capacitor representing the rear compliance has been removed, and the rear

resistance RAb replaced by the resistance of an infinite duct,

RAb =
ρ0c

S
. (8.69)

The resulting circuit is that of figure 8.19. Note that the impedance of an infinite

duct is purely resistive, and so doesn’t add any reactance (not additional mass

or compliance), MAT = MAS and CAT = CAS . Consequently, the resonant

frequency of the transmission line loudspeaker is the same as the free driver’s

resonance,

ωc =

√
1

MADCAD
= ωs. (8.70)
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This means that we can get a better low frequency response than the sealed

cabinet. However, it is essential that the absorbent material in the duct provides

an anechoic like termination, otherwise we will get unwanted radiation from the

rear of the driver. More complex designs can use this radiation to improve the

response, but that is beyond the scope of this module. We will use a vented

cabinet design to achieve this sort of improvement instead.

8.4 Vented Cabinet

So far we have covered the simplest loudspeaker enclosure, the sealed cabinet.

We saw that its low frequency response was basically limited by the free driver

resonance and the added compliance of the cabinet. Now lets ask the question

on everyone’s mind... ‘what happens if we put a hole in the box?’ This is what

we called a vented box loudspeaker (also known as a bass-reflex loudspeaker).

People knew very early on that by putting a hole in the box we could improve

the low frequency response of a loudspeaker. The problem was that there was no

fool proof way of designing them. It was typically done by trial and error, using

practical experience. So getting a good design was quite difficult.

So what are the benefits of having a vented enclosure? Well, what happens to

the resonance of a loudspeaker when we put it in sealed box? It goes up. This is

what limits the loudspeaker’s low frequency performance. It turns out that this

isn’t the case for the vented box design. The resonant frequency is more or less

unchanged.

So there are 3 main reasons to go with the vented box design.

1) We can extend the low frequency performance.

2) It allows us to better control the cone movement, thus allowing a much higher

power output.

3) By utilising radiation from the rear of the driver we can improve the loud-

speaker’s efficiency.

Loudspeaker manufactures were well aware of these benefits, but at the time they

didn’t have the tools to design vented loudspeakers that worked reliably.

That was until Neville Thiele came around. His major contribution was recog-

nising that the loudspeaker was basically acting like a high pass filter, and that it

was possible to apply filter design techniques directly to the design of loudspeak-

ers.

Shortly after Richard Small, one of Neville’s students, extended Neville’s work

and in 1973 published a series of seminal papers in the AES which provided a

‘fool proof’ way of designing vented cabinet loudspeakers. This method is still

used by manufactures today, and is what we will be focusing in this module.

An important aspect of their work was the to realise that the driver itself was

an important design parameter in the design process. When we looked at the

sealed box we found that the total compliance was the box compliance in series

with the driver suspension. The speaker did change things, but it in terms of a

slight misalignment, it is quite forgiving.

For a vented cabinet design, if you go slightly off the design target it all

goes horribly wrong. It was partly for this reason that they proposed the Thiele-

Small parameters for characterising loudspeaker drivers. They went on to set up
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framework where either: a) you work out what driver parameters you need for a

particular box, or b) what box parameters you need for a particular set of driver

parameters.

So before we start getting into the method itself lets look a little more closely

at how a vented cabinet design actually works.

The sealed cabinet was an attempt to create an infinite baffle, thus getting rid

of any interference from the rear of the driver. Whilst this seamed like a good idea

at the time, it turns out that we can actually utilise this rear radiation to increase

the level of the speaker, i.e. to make it more efficient at some frequencies.

The problem is that the rear of the driver is 180◦ out of phase with the front.

If we were just added them together they would effectively cancel (this is why

we added the infinite baffle). The trick is, that by adding a port we are able to

invert the phase of this rear radiation, and then re-radiate it from the front. So

for a listener in front the speaker it is as if the driver and the vent are in phase.

This effect can provide a substantial bass boost at low frequencies.

The benefits of a vent are however limited to low frequencies. What is the

issue at high frequencies? Well, the driver and the vent will act as two radiators,

and if the wave length is short relative to their separation, we can get considerable

variation in phase differences between the two at a listener position. Obviously, at

low frequencies, when we have long wave lengths, the two radiators look like they

are in the same place, and so radiate as one. Luckily, we will see that the vent

does’t radiate very well at high frequencies, so this issue is avoided. And anyway,

we are quite happy with the mid frequency performance of our loudspeaker, its

just the low frequencies that we want to give a helping hand. So all in all, the

vent is a nice addition (when designed correctly).

So the physical construction of a vented enclosure is pretty simple. We take

a sealed cabinet, put a hole in it, then put a tube in the hole to make a vent.

Typically, the vent/hole is made to be circular (these are the easier to design, and

have less losses than rectangular vents).

At the moment we are just crossing our fingers and hoping that the vent

somehow gives as a 180◦ phase shift. Soon we will go through and derived a

lumped parameter equivalent circuit and see that this is in fact the case. But

first, lets think about what our ‘lumped elements’ will be.

These elements are shown in figure 8.20 and listen below.

CAB , RAB

MAD, CAD, RAD

MAF1
, RAF1

M ′AV , R′AV
MAF2

, RAF2

UB

UD

UV

Figure 8.20: Vented enclosure.

• Driver:

– MAD - Mass of the driver in acoustic units

– CAD - Compliance of the driver in acoustic units

– RAD - Damping of the driver in acoustic units

– MAf - Inertial loading due to the radiation impedance

– RAf - Resistive loading due to the radiation impedance

– UD - Volume velocity of the driver

• Enclosure:

– CAB - Acoustic compliance of the cavity

– RAB - Acoustic damping within the cavity

– UB - Volume velocity within the cavity
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• Vent:

– M ′AV - Acoustic mass of the vent

– R′AV - Acoustic damping within the vent

– M ′Af - Inertial loading on the vent due to the radiation impedance

– R′Af - Resistive loading on the vent due to the radiation impedance

– UV - Volume velocity of the vent mass

Most of our lumps are the same as in our sealed cabinet. We have the driver

parameters: mechanical mass, suspension compliance and damping, radiation

load (baffled piston), and the diaphragm volume velocity. Here we have given

these all in acoustic domain units, hence the A subscript. The second subscript

D tell us that these are properties of the driver in isolation. The radiation load

includes inertial and resistive terms. These are usually included in the quoted

parameters (S).

We have the cabinet parameters: acoustic compliance (dependant on the vol-

ume of the box) and damping (i.e. due to absorption in the box), but also we

have a new volume velocity, corresponding to the air inside the box. Without the

vent (i.e. for a sealed box), the box velocity is simply equal to the cone velocity.

For the vent we assume that the mass within it acts as if it were a solid lump.

Then we have the following vent parameters: the mass of air in the vent, the

resistive losses in the vent, the radiation load of the vent (pistonic, including both

inertial and resistive components), and the vent volume velocity. We use the dash

to denote that the mass and resistance do not include the air load.

The key difference between the vented and sealed design is the introduction

of a second mass element, that of the vent. This means our vented loudspeaker

is a 2 degree of freedom (DoF) system.

8.4.1 Two DoF Systems

The degree of freedom (DoF) of a mechanical (or acoustical) system is the number

of independent parameters required to define its configuration. In general, when

we consider dynamic systems (whether acoustical, mechanical or electrical), it is

true that the number of resonant frequencies in the system response, is equal to

the number of DoFs that the system possesses. This is a very general rule, and

clearly applies to our loudspeaker.

With the addition of a vent mass, our loudspeaker has become a 2 DoF vi-

brating system (see figure 8.24). This means that our system should now exhibit

two resonances.

8.4.2 Equivalent Circuits

Shown in figure 8.21 is a reminder of what our sealed box equivalent circuit looked

like. As you can see, we have a single loop. Therefore we only have one current

flowing. This means every component experiences the same current flow. Now

since we used the impedance analogy, the current is analogous to volume velocity.

So being in series means that the velocity is the same for every part.

Now that we have an additional vent mass, we have a 2 DoF system. Each

mass has an associated volume velocity. So we no longer have a single volume

velocity (i.e current) flowing. The total volume velocity in the system is supplied
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V Bl
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(Bl)2

S2
DRE RAD MAD

CAD
RAb MAb

CAB

RAf

MAf

p

Figure 8.21: Complete equivalent circuit of a
sealed cabinet loudspeaker including front and
rear radiation loading.by the driver. This is a fixed resource. Given that the volume velocity has to be

conserved, we know that the sum of the enclosure and vent velocities must equal

the volume velocity supplied by the driver, UD = UV +UB . This is equivalent to

saying that the box velocity is simple the relative velocity between the driver and

vent,

UB = UD − UV . (8.71)

So now that we have two velocities, we have to have two loops, i.e. there has

to be a branch that splits the driver volume velocity between the box and the

vent. The resulting circuit is shown in figure 8.22. On one branch we have our

sealed cabinet impedance. On the other we have the vent mass and resistance,

and its radiation. In electrical terms, we can think of this additional vent branch

as shorting out the enclosure, therefore reducing the velocity in the box.

V Bl
SDRE

UD

(Bl)2

S2
DRE RAD MAD

CAD
RAf MAf

RAB

CAB

RAV MAV

RAV f

MAV f

UB

UV

Figure 8.22: Complete equivalent circuit of a
vented cabinet loudspeaker including front and
rear radiation loading.Now based on this equivalent circuit model, how do we chose the parameters

such as box volume and port dimensions? Well before we get into that, lets look

at how this new circuit resonates, and try to get some physical interpretation of

what these resonances are doing.

Shown in figure 8.23 is the electrical impedance of a vented loudspeaker. No-

tice that we have two very well defined resonances. So how do we get this sort of

electrical impedance? We apply an oscillating voltage to the driver whilst mea-

suring the current being delivered. From this we can calculate the loudspeaker

impedance. Then we just repeat this process at each frequency we are interested

in.

Figure 8.23: Electrical impedance of vented loud-
speaker.

So what would you expect if we took the driver out of the enclosure and

repeated this experiment? If you do this for a driver in free air you get a single

peak, corresponding to the free air resonance of the driver. For a vented cabinet

you get multiple peaks, which relate to the different modes of oscillation.

There are 3 important frequencies identified in this figure. The first lower peak

fL, the higher resonant peak fH , and the minimum between them fM . Also
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shown is the nominal electrical resistance, and the driver mechanical resistance

in electrical units. Notice that if we increase the mechanical resistance, the peak

value of the impedance also increases.

Now lets look at what is happening at each of these frequencies.

• Lower resonance fL - At low frequencies the air in the cabinet does not com-

press, its acts as though it was rigid, i.e. the driver suspension is much softer

than the cabinet of air. This means that the driver mass and the vent mass

both bounce on the driver suspension. With reference to the mass-spring-mass

in figure 8.24, this corresponds to the two masses moving in the same direc-

tion, i.e. in phase. This is just the same as having a single DoF system, with

a total mass equal to the driver and vent mass together.
MAD

MAV

CAD RAD

CAB RAB

UD

UV

Figure 8.24: Lumped parameter mechanical
model of a vented loudspeaker - relative motion
at the first resonance fL

One thing we need to remember here is, although we have drawn the velocity

arrows in the same direction, physically, the driver and vent are moving in

opposite directions (180◦ out of phase). As the driver moves out, it sucks the

vent mass inwards, and visa versa. This means that we get very little radiated

output from the loudspeaker. So when we design a vented cabinet, we want

to end up with this lower resonant frequency below our working range.

Note that the increased driver velocity, causes an increased back EMF, which

is why we see an increase electrical impedance.

• Upper resonance fH - Around this resonance the driver suspension appears

really soft, and so the driver and vent mass bounce together on the cavity

compliance. With reference to the mass-spring-mass in figure 8.25, this corre-

sponds to the two masses moving in opposite directions, i.e. out of phase. At

first thought it might look as if these two will cancel out. We have to remem-

ber that UD represents the velocity of the back of the driver. So what comes

out the front is actually in phase. Therefore we had an efficient radiation,

because the vent is helping out the driver.

Note that the increased driver velocity results in increased back-emf and so

the electrical impedance rises again.
MAD

MAV

CAD RAD

CAB RAB

UD

UV

Figure 8.25: Lumped parameter mechanical
model of a vented loudspeaker - relative motion
at the upper resonance fH

• Minimum frequency fM - A minimum in the electrical impedance means that

we have a minimum in the back EMF generated. With reference to the mass-

spring-mass in figure 8.26, this corresponds to the driver mass hvaing a min-

imal velocity, i.e. it is as if the cone is fixed. Remember, the electrical and

mechanical domains were coupled using the mobility analogue. So when the

mechanical impedance is a maximum, the electrical impedance is a minimum.

At maximum mechanical impedance the cone finds it very hard to move, so has

a small velocity. This corresponds to a minimum in the electrical impedance,

as we can see in figure 8.23.

This is the same resonance frequency we would get is we were to rigidly fix the

diaphragm so it couldn’t move. What does this correspond to? The Helmholtz

resonance of the box. And how do we calculate it? Easy, it only depends on

the vent mass and the box compliance. Clearly, if this is the resonance when

the driver is fixed, it must be independent of the driver. So it is purely a

property of the box. We already know the resonant frequency of a Helmholtz

resonator, for the vented cabinet it is given by,

fM =
1

2π

√
1

MAV CAB
(8.72)
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where MAV is the acoustic mass of the vent, and CAB is the acoustic com-

pliance of the cavity.

MAD

MAV

CAD RAD

CAB RAB

UD = 0

UV

Figure 8.26: Lumped parameter mechanical
model of a vented loudspeaker - relative motion
at the minimum frequency fM

So what happens when we driver our loudspeaker at the Helmholtz frequency?

Well, the driver barely moves, but the vent mass moves with a high velocity.

This is the frequency that it wants to oscillate at! Because the vent is just

a lump of air oscillating, it is very light, and so it couples well with the air

outside. In turn we get lots of vent radiation and a high output pressure level.

Now what happens when we combine the driver radiated and vent radiated con-

tributions? Well this is where the magic happens.

Around the lower resonance fL the vent and driver mass move out of phase, and

so we get destructive interference and very poor radiation. In fact, the combined

effect of the vent and driver (which individually have a 12 dB/oct roll off) yield

a 24 dB/oct low frequency roll off. Moving towards the minimum frequency fM
the driver’s contribution tends to 0, whilst the vent radiation reaches a maximum.

At this frequency, i.e. the Helmholtz resonance of the box, the vent is the primary

source of radiation.

Figure 8.27: Pressure contributions of driver and
vent.

As we increase the frequency further, the inertia of the vent mass starts to act

like a low pass filter, and the vent radiation tails off. This is good though, we

only want the vent to help us out at low frequencies. Between the Helmholtz and

higher resonance fH the vent and driver begin to radiate in phase, and so they

interfere constructively. It is this added contribution that gives us a flat extended

bass region. At high frequencies the driver will take over and the cabinet will look

like a sealed box.

In contrast to a sealed cabinet design, the vented loudspeaker offers several

advantages. Firstly, utilisation of the rear radiation has allowed us to extend the

low frequency response of the loudspeaker to approx. the Helmholtz resonance

fM . The sealed cabinet however is limited by the driver resonance fs. Secondly,

we have improved the roll off rate, going from a 12 dB/oct to 24 dB/oct.

However, the above benefits come at the cost of a poorer transient response

compared to the sealed cabinet design.

8.4.3 Equivalent Circuit Analysis

Having put together an equivalent circuit representing our vented loudspeaker we

are now interested in analysing its performance.
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To analyse the properties of figure 8.22 it is convenient to group terms together

to form the complex impedances:

ZD =
(Bl)2

S2
DRE

+RAD + jωMAD +
1

jωCAD
+RAf + jωMAf (8.73)

ZB = RAB +
1

jωCAB
(8.74)

ZV = RAV + jωMAV +RAV f + jωMAV f (8.75)

The corresponding equivalent circuit is shown in figure 8.28. From figure 8.28

V Bl
SDRE

UD

ZD

ZAB ZV

UB

UV
Figure 8.28: Complete equivalent circuit of
a vented cabinet loudspeaker using grouped
impedance elements.

the total impedance is given by,

ZT = ZD +
ZBZV
ZB + ZV

. (8.76)

Using the theory of AC current dividers the current (or volume velocity) through

each branch can be determined as,

UD =
Bl

SDRE

ZT
, (8.77)

UB =
ZV

ZV + ZB
UD (8.78)

and

UV =
ZB

ZV + ZB
UD. (8.79)

If we assume far field radiation at low frequencies then the path difference

between the driver and the vent is negligible. In this case we can model the

acoustic radiation as that of a monopole whose volume velocity is the sum of the

vent and driver volume velocities.

There will be a contribution from the driver UD, and an out of phase con-

tribution from the vent, −UV . So the total radiating volume velocity is UT =

UD + (−)UV . This is exactly what we determined for the box velocity. So find-

ing the total radiating volume velocity, is equivalent to finding the box volume

velocity. This is a really useful result.

Substituting the driver velocity into the box velocity we obtain,

UB =
ZV

ZV + ZB

V Bl
SDRE(

ZD + ZBZV
ZB+ZV

) . (8.80)

It is straightforward to rearrange the above as,

UB =
V Bl
SDRE

ZD

(
ZB
ZV

+ 1
)

+ ZB
. (8.81)
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Now lets substitute back in our grouped impedance terms. For simplicity we will

ignore the cabinet and vent damping, and vent radiation effects. The driver’s

radiation impedance terms (also the electrical resistance) are included in the free

space mass and damping terms MAS = MAD+MAf and RAS = (Bl)2

S2
DRE

+RAD+

RAf . Substituting in these terms we obtain,

UB =
V Bl
SDRE

jωMAS +
(
RAS + 1

jωCAD

)(
1

jωMAV jωCAB
+ 1
)

+ 1
jωCAB

. (8.82)

As with the sealed cabinet analysis, we factor out a jωMAS ,

UB =
V Bl
SDRE

jωMAS

(
1 + RAS

jωMAS
+ 1

(jω)2CADMAS

)(
1

(jω)2CABMAV
+ 1
)

+ 1
jωCAB

(8.83)

before substituting in for the free driver Q-factor, QTS/ωs = MAS/RAS , reso-

nance frequency ω2
s = 1/MASCAD, and the Helmholtz cavity resonance ωB =

1/CABMAV ,

UB =
V Bl

jωMASSDRE

 1(
1 + 1

QTS
ωs
jω +

(
ωs
jω

)2
)((

ωB
jω

)2

+ 1

)
+ 1

(jω)2MASCAB

 .
(8.84)

The acoustic mass MAS = 1/CASω
2
s can be substituted in to yield,

UB =
V Bl

jωMASSDRE

 1(
1 + 1

QTS
ωs
jω +

(
ωs
jω

)2
)((

ωB
jω

)2

+ 1

)
+
(
ωs
jω

)2
CAS
CAB


(8.85)

where α = CAS
CAB

is an important design parameter called the compliance ratio.

After expanding the bracketed terms,

UB =
V Bl

jωMASSDRE

 1

1 + 1
QTS

ωs
jω +

(
ωs
jω

)2

+
(
ωB
jω

)2

+ 1
QTS

ωs
jω

(
ωB
jω

)2

+
(
ωB
jω

)2 (
ωs
jω

)2

+
(
ωs
jω

)2
CAS
CAB


(8.86)

the above can be rearranged as so,

UB =
V Bl

jωMASSDRE

 1

1 + 1
QTS

ωs
jω +

(
1 + CAS

CAB

)(
ωs
jω

)2

+
(
ωB
jω

)2

+ 1
QTS

ωs
jω

(
ωB
jω

)2

+
(
ωB
jω

)2 (
ωs
jω

)2

 .
(8.87)

Equation 8.87 describes the box volume velocity (equivalent to the total volume

velocity). Like the sealed cabinet’s volume velocity (see equation 8.47), the above

equation is made up of two terms. The first constitutes a low pass like term, and

is identical to the equivalent term in equation 8.47. The second,

F (jω) =
1

1 + 1
QTS

ωs
jω +

(
1 + CAS

CAB

)(
ωs
jω

)2

+
(
ωB
jω

)2

+ 1
QTS

ωs
jω

(
ωB
jω

)2

+
(
ωB
jω

)2 (
ωs
jω

)2

(8.88)

constitutes a 4th order high pass filter term. It will turn out, similarly to the

sealed cabinet, it is this term that governs the frequency response of the vented

loudspeaker.
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The shape of F (jω) is more complex than that of E(jω) (the frequency

response of a sealed cabinet). It will depend not only on the driver properties

and cabinet volume, but also the vent geometry. Given that F (jω) is a 4th order

filter, a greater number of possible response shapes are available.

Notice that we have the ratio of mechanical and acoustic cavity compliances.

The compliance ratio, α = CAS
CAB

, is a really important parameter when designing

vented cabinets. We can equally define it in terms of the cavity volume and the

equivalent acoustic volume of the driver suspension. We will see how to use this

term a little later on when we go through the design procedure.

So lets consider the radiated pressure of our vented loudspeaker by assuming

a monopole like radiation,

p(r, ω) =
jρ0ckUB

4πr
. (8.89)

Substituting in our total volume velocity,

p(r, ω) =
jρ0ω

4πr

V Bl

jωMASSDRE
F (jω). (8.90)

it is clear that the frequency dependence in the first order low pass term of our

volume velocity cancels with the frequency dependence in the monopole radiation,

p(r, ω) =
ρ0

4πr

V Bl

MASSDRE
F (jω). (8.91)

We are left with a collection of constants, followed by our 4th order high pass

term. The constants are related to the efficiency or sensitivity of the loudspeaker,

whilst the 4th order high pass describes its frequency response.

We have shown that the low frequency response of a vented loudspeaker is

governed by the 4th order high pass filter term F (jω). Now suppose we want a

loudspeaker to exhibit a particular shaped response, for example a Butterworth.

How do we get this?

Well, we know that the Q-factor, free driver resonance, Helmholtz resonance,

and compliance ratio are all functions of the mechanical properties of the driver

and the box geometry. So one option would be to play around with these param-

eters (making sure that we don’t consider parameter values that are physically

impossible) until we achieve the response shape that we are after. Given that

there are quite a few variables, this is not a very practical approach.

There is a far easier second option, thanks to the work of Thiele and Small.

8.4.4 Choosing an Alignment

In a 1971 paper Small proposed a procedure for choosing the alignment for vented

cabinet loudspeakers. The main design tool was a series of charts like the one in

figure 8.29 (this one corresponds to a lossless cabinet, i.e. we haven’t added any

absorptive material).

This paper was essentially responsible for the popularity of the vented cabinet,

and it makes it exceptionally easy to design a good quality loudspeaker.

When we designing sealed cabinets, we chose the system Q-factor and typically

solve for the necessary box volume. Now things are more difficult. But, this chart

handles all the difficult stuff for you. So there is quite a lot going on in the chart

so lets go through it bit by bit.

So what are our design steps?



90 microphone and loudspeaker design

Figure 8.29: Small design chart for a lossless
vented cabinet with a Butterworth frequency re-
sponse.

• Step 1:

1) First select a driver, this will give you the QTS , fS and CAS parameters

of the driver.

• Step 2:

1) Use the chart, follow the line labelled QTS and locate the QTS of your

driver.

2) Read off the α that corresponds to that QTS (remember, α (bottom scale)

is the ratio of the driver compliance to the box compliance, so a large value

of α implies a small box compliance compared with the driver compliance).

3) Use the compliance ratio α to calculate box volume V = CABρ0c
2 =

CASρ0c
2/α. A speaker with small QTS → 0 will yield a small α → 0 and

so a small box (holy grail!).

• Step 3:

1) For the same α, look up where it intersects with the other two lines.

2) The parameter h is the ratio between Helmholtz and driver resonance,

h = fh/fs.

3) As the driver resonance is known, and the Helmholtz resonance is deter-

mined by the box compliance and the vent mass, h tells us the vent mass.

From this we can determine the port dimensions. (Remember the port is an

acoustic mass and so is proportional to length and inversely proportional to

cross-section area. So it is tempting to make very narrow to increase mass,

but this makes the particle velocity in vent large and generates turbulent

flows. This is not good; it creates a chuffing sound!)
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4) Small gives an empirical rule for port diameter (idea keep particle velocity

lower than 5% speed of sound), Sv ≥ 0.8fbVd. It would be usual to account

for flanged port at one end use with end corrections (we will cover this

shortly).

5) Finally from the line f3/fs we can obtain f3 which is the lower limit of the

response (-3dB limit).

The example shown in figure 8.27 was calculated using the steps described

above. It is important to recognise the importance of getting the a) correct

loudspeaker Theile-Small parameters and b) determining the correct values of α

and h from the Small chart in figure 8.29. Shown in figure 8.30 is the predicted

response of a vented loudspeaker with the same cabinet geometry as in figure

8.27, but but with a different driver.

Figure 8.30: Example of misalignment due to
incorrect driver parameters.

8.4.5 End Corrections

Suppose we have a mass of air, oscillating in a short vent. It is important to

remember that, like the loudspeaker driver, there is an influence of the outside

the vent. As the vent mass oscillates it must also move some amount of the

air outside. This means that the effective length of the tube is longer than the

physical length. We need to apply end corrections to any tube opening into an

environment much larger than the tube itself.

Depending on the type of termination the type of end correction will vary. With

vented cabinets in mind we are interested in either an infinite baffle termination

(i.e. on the outside of the loudspeaker housing) or a free space termination (i.e.

inside the cabinet).

Lets consider the infinite baffle termination first. Recall the radiation impedance

of a rigid piston (see equation 7.20),

ZA,rad ≈
ρ0ck

2

2π
+ jω

8ρ0

3π2a
. (8.92)

This equation is also appropriate for modelling the oscillating vent mass so long

as it only moves as a rigid body. We are only interested in the effect of added

mass, and so we can ignore the resistive element of the above equation. Now

recall the acoustic mass of a column of air is,

MA =
ρ0l

S
=

ρ0l

πa2
(8.93)
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where a is the vent radius and l is its physical length. Adding the radiation mass

to the above the yields,

MA =
ρ0l

πa2
+

8ρ0

3π2a
. (8.94)

By multiplying the second term top and bottom by a/3π we introduce a common

denominator,

MA =
ρ0l

πa2
+

8aρ0/3π

πa2
=

ρ0

πa2

(
l +

8

3π
a

)
. (8.95)

From the above it is clear that by taking into account the radiation load of an

infinite baffle the effective length of the vent becomes,

l′ = l +
8

3π
a ≈ l + 0.85a. (8.96)

l

l′ = l + 0.85a+ 0.61a

Figure 8.31: Effective length of the free/infinite
baffle terminated vent.

Now lets consider the free space termination. This yields a slightly different

radiation impedance given by,

ZA,rad ≈
0.0796ρ0

c
+ jω

0.1952ρ0

a
. (8.97)

Adding the mass term from the above radiation impedance to the vent mass,

MA =
ρ0l

πa2
+

0.1952ρ0

a
(8.98)

which simplifies to,

MA =
ρ0

πa2
(L+ 0.195ρ0πa) =

ρ0

πa2
(l + 0.6126a) . (8.99)

From the above it is clear that by taking into account the radiation load of free

space the effective length of the vent becomes,

l′ = l + 0.6126a. (8.100)

A vent that is free at one end an terminated by an infinite baffle at the other

is subject o both end corrections. Consequently, the total effective length of a

loudspeaker vent is,

l′ = l +
8

3π
a+ 0.195ρ0πa ≈ l + (0.85 + 0.61) a. (8.101)

Often when designing a vented loudspeaker the task is to find the appropriate

vent dimensions to achieve a particular Helmholtz (cabinet) resonance. It is im-

portant to remember that the necessary dimensions include the effect of radiation

load. Once found the physical vent length can then be determined from equation

8.101.

8.5 Performance Parameters

We have got as far as developing a model of our sealed enclosure loudspeaker,

but what can we say about the performance of this loudspeaker? Well it turns

out quite a bit.

First of all, what sort of performance parameters might we be interested in?

• Frequency response – describes the radiated sound pressure level as a function

of frequency

• Directivity – describes the radiated sound pressure level as a function of angle.
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• Sensitivity – describes the radiated sound pressure level in dB at a fixed dis-

tance of 1m for 1 watt of input power.

• Efficiency – is the percentage of electrical input power that is converted to

acoustic power

• Rated power – how much power the speaker is designed to safely receive from

an amplifier before it will start to distort

We have already had a look at the frequency response of our loudspeaker, and

to some extent we have covered its directivity through our rigid piston model.

But what about the others?

8.5.1 Directivity

We already had a little look at directivity when we covered our rigid piston

model. You’ll remember that at low frequencies our piston model behaved like

a monopole, and radiated sound in all directions equally. At high frequencies

the sound radiation becomes much more directional. If we go up high enough in

frequency, the directivity develops lobes, where the main central lobe carries the

most energy.

The directivity of a loudspeaker is a very important parameter when designing

listening spaces. We want to maximise the radiation towards the listener, and

minimise the radiation that just goes into the room. So how to we characterise

the directivity?

Well there are two common ways of displaying it. The first is using a polar

plot. This is were we display the angular dependence as a continuous curve, with

a different plot for each frequency. The polar plot of a rigid piston (see figure

7.11) is reproduced in figure 8.32.

Figure 8.32: Polar response at 150, 3000 and
15000 Hz for a piston with r = 0.15 m.

The other common approach is to plot the frequency dependence as a contin-

uous curve, which a different plot for each angle, as in figure 8.33.

Figure 8.33: Waterfall plot of piston directivity
at 10◦ intervals between 0◦ and 90◦, for a piston
with r = 0.15 m.

So these are graphical representations of the directivity. But what about some

sort of numerical value that says how directive a source is? Well there are two

common quantities for doing just this.
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First, the directivity factor. This is the ratio of the sound intensity radiated by

the loudspeaker (at a stated position and angle), to the sound intensity radiated

by a point source (i.e. a monopole) whose acoustic power is the same as the

loudspeaker,

Q(f) =
Ir
Ip
. (8.102)

This is a frequency dependent parameter. At low frequencies, where the loud-

speaker radiates as a monopole, the directivity factor is equal to 1. At higher

frequencies, the intensity is typically focused forwards, and so Ir is greater than

Ip and Q(f) increases with frequency.

The issue with the directivity factor is that its value is often quite unwieldy.

This is why we use the directivity index, which is 10 times the log of the directivity

factor,

DI(f) = 10 log10Q(f). (8.103)

The directivity index is expressed in dB, and at low frequencies is equal to 0dB.

When the radiated intensity is twice that of the equivalent monopole, the direc-

tivity index is equal to 3dB.

8.5.2 Acoustic Power and Intensity

Acoustic power is a scalar quantity that describes the amount of sound energy

that is radiated per unit time. It is used routinely in industry to characterise

how loud, for example domestic products are. It is defined in such a way that

it is an independent property of the acoustic source (i.e. doesn’t depend on the

environment the source is put in). This is really useful because its lets us use the

sound power to compare two sources. Acoustic power has the SI units of Watts,

but is most often expressed as a dB value. So how do we calculate sound power?

Well first, we recall that mechanical power in general is defined as the dot

product between force and velocity,

W = f · u. (8.104)

We know that pressure is related to force by area, so we can substitute this in.

W = Spn̂ · u. (8.105)

But remember, force is a vector and pressure is a scalar. So we have to include

the normal vector n̂ to keep track of directions. If we consider the surface over

which the pressure acts to be a hemisphere things get a bit easier (S = 2πr2).

Now remember, the particle velocity is related to pressure by the characteristic

acoustic impedance. Now substitute in for the pressure and impedance.

W = Spn̂ · p
Zs

n̂. (8.106)

We can now substitute in the radiated pressure from a piston (assuming low

frequencies, i.e. ka << 1) and the specific acoustic impedance of a plane wave

(we are assuming far field radiation).

W = 2πr2

(
ρ0ck

2πr

)2
1

ρ0c2
|U |2 (8.107)
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After cancelling appropriate terms we end up with the sound power being equal

to the real part of the acoustic front loading times the volume velocity squared,

W =

(
ρ0ck

2

2π

)2

|U |2 = RAf |U |2. (8.108)

Substituting in for the volume velocity we obtained,

W = RAf

∣∣∣∣ V Bl

ωMASSDRE

∣∣∣∣2 |E(jω)|2 = Wref |E(jω)|2, (8.109)

where we define the reference power Wref as,

Wref =
ρ0

2πc

∣∣∣∣ V Bl

MASSDRE

∣∣∣∣2 . (8.110)

There is another very useful quantity, closely related to acoustic power. In-

tensity is a vector quantity that describes the power carried by sound waves per

unit area in a direction perpendicular to that area. Its definition is pressure times

velocity,

I = pu. (8.111)

Now we can substitute velocity for pressure over impedance (don’t forget the

normal vector),

I = p
p

Zs
n̂. (8.112)

Now substitute in the pressure and impedance,

I =

(
ρ0ck

2πr

)2
1

ρ0c2
|U |2n̂. (8.113)

cancel the appropriate terms, and voila, we have the sound intensity being equal

to the acoustic power divided by the hemisphere surface area,

I =
W

2πr2
(8.114)

But remember, intensity is a vector, so we still have our normal vector. For a

hemisphere we know that this vector points radially outwards at all times.

We can see that as move further away from the source, the sound intensity

gets smaller, whilst the acoustic power remains the same. This is why we use

power to characterise acoustic sources, and not intensity.

8.5.3 Sensitivity/Efficiency

The sensitivity of a loudspeaker is one of the most important characteristics.

Whilst the rated power of a loudspeaker tells us how much power a loudspeaker

can handle, it does tell us what this power translated to as far as a dB level goes.

For example, we might have a 1000 W loudspeaker, which produces 100 dB when

driven at some particular voltage. Another loudspeaker, perhaps rated as 600 W

could well produce a greater level, say 110 dB for the same input voltage.

The sensitivity of a loudspeaker to its input voltage is obviously a key param-

eters, perhaps more important than the rated power level. How is it defined?

It is the on axis radiated sound pressure level at a specified 1 meter (in an

anechoic condition), when the loudspeaker is driven by 1 W of electrical input

power.

Sens = 20 log10

(
p

pref

)
at 1W at 1m

(8.115)
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To calculate the sensitivity then, we first need to figure out what voltage translates

into 1 W of electrical power (this is done assuming a purely resistive impedance).

Electrical power is equal to voltage times current,

W = V I. (8.116)

Substituting current for voltage over the nominal resistance gives power in terms

of voltage squared and resistance,

W =
V 2

RE
. (8.117)

Rearranging this equation tells us that 1 W of power corresponds to a voltage

equal to the square root of the resistance, V =
√
RE .

Next, using our equivalent circuit model, with an input voltage of
√
RE we

can predict the radiated sound pressure level, in dB at 1m. Lets look at a quick

example.

Suppose we measure 0.2 Pa at 1 volt for an 8 Ohm speaker. What is the

sensitivity? Well, to obtain 1 W of input power we need to driver to speaker

with
√
RE = 2.83 V . Now remember, according to our equivalent circuit model

the radiated pressure is directly proportional to the applied voltage. So if we

measured 0.2 Pa under 1 V , we should measure 0.2 × 2.83 = 0.57 Pa. This

corresponds to a sensitivity of 89 dB.

Like the directivity, the sensitivity is frequency dependent. However, we often

want a single value that encompasses all frequencies. But we have to remember

that the ear is not equally sensitive to all frequencies, so we have to apply an

appropriate weighting curve to the measured/predicted sound in order to reflect

their aural effect. Because the frequency response of the ear is also sensitive to

the level of sound, which weighting curve is used will depend on the amplitude

level that is considered. For example, for a level of 55-85 phons a B weighting is

used.

Figure 8.34: Distribution of sensitivities across a
range of loudspeakers.

So what sort of sensitivity do typical loudspeakers have? Shown in figure 8.34

is a plot of the distribution of sensitivities across a range of loudspeakers. We

can see that values around 85-90 are most typical. Speakers outside this range

are usually either budget speakers, or very expensive professional monitors.

Loudspeaker efficiency is a similar parameter to sensitivity It tells us how effi-

cient a loudspeaker is at converting electrical power into acoustic power, and is

defined simply as their ratio (times a 100 to get it as a percentage value)

η =
WA

WE
× 100%. (8.118)

Like the sensitivity, we assume the loudspeaker load is purely resistive, so we

can easily calculate the electrical power as the voltage squared over the nominal

resistance. Then our acoustic power is the product of the volume velocity and

the acoustic radiation load.

η =
RAf |U |2

V 2

RE

× 100% =
RAfRE |U |2

V 2
× 100%. (8.119)

This gives a nice straight forward for prediction the efficiency of our loudspeaker

model.

It turns out that loudspeakers are incredibly inefficient. So it is not untypical

to get efficiency ratings in the order of a couple percent. Shown in table 8.1 with

some typical values of efficiency and their corresponding sensitivity.



loudspeaker systems 97

Efficiency Percent Sensitivity

0.2 20 % 105 dB

0.1 10 % 102 dB

0.05 5 % 99 dB

0.02 2 % 95 dB

0.01 1 % 92 dB

0.005 0.5 % 89 dB

0.002 0.2 % 85 dB

0.001 0.1 % 82 dB

Table 8.1: Table of efficiency and corresponding
sensitivity values.

Alternatively, given a particular efficiency the sensitivity can be calculated ac-

cording to,

Sens = 112 + 10 log10(η). (8.120)

8.5.4 Rated Power

We have covered two parameters that describe the conversion of electrical power

to acoustic power, the sensitivity and efficiency. Another important loudspeaker

parameter is their rated power. This is the electrical power that a loudspeaker

can handle before either the amount of distortion becomes unacceptable, or we

have driver failure.

We haven’t really covered distortion in this module, but it is important to

be aware of it. Fundamentally what it means is that if we were to driver our

loudspeaker with a single pure tone, the radiated pressure would consist of the

pure tone, plus a series of harmonics (potentially other frequencies also) which

were not present on the input signal. These harmonics are typically due to non-

linearity in the system. For example, if we drive our loudspeaker with a high

amplitude, the cone will displace quite far from its equilibrium. In doing this it

will stretch the suspension. This will cause the compliance of the suspension to

change. So now we have an amplitude dependent compliance. There are many

other sources of non-linearity and hence distortion, but we wont covered those.

What about failure? The basic problem is that if you driver a speaker to hard

you can permanently damage it or even cause it to fail. For example you might

tear the suspension, burn out the voice coil, demagnetise the permanent magnet,

etc.

To avoid these issues manufactures provide with their loudspeakers a power

handling rating. This is the maximum input power the speaker should be driven

by. Based on the power handling, and the loudspeaker sensitivity we can get an

idea of the maximum sound pressure level our speaker can generate.

Understanding the two main causes for driver failure can help when it comes

to understanding power ratings: they are thermal and mechanical.

• Thermal failure is the most common. It occurs when too much current is

passed through the voice coil, and it is unable to dissipate the heat generated.

We have seen that loudspeakers are incredibly inefficient! (in the region of

0.5-5%) The rest of the power supplied is turned into heat! So loudspeakers

can get very hot. If it can dissipate the heat quick enough it will fail.

• Mechanical failure occurs when the cone, voice coil or suspension are forced

beyond their limits. This is usually a result of the amplified peak voltage being

to high. This causes an over excursion which results in the voice coil moving



98 microphone and loudspeaker design

completely out of the voice coil, or ‘bottoming out’ and hitting the back plate

of the loudspeaker. Poor design of the cabinet can further cause excursion

problems.

So how do we rate the power handling of a loudspeaker? Well unfortunately,

it’s a little confusing because there are several different types of power ratings,

and loudspeaker manufactures tend to mix and match which ones they present

(often using which ever gives them the biggest number!).

The most well accepted power rating is the nominal power, which is specified

according to an AES standard from 1984. It specifies that the driver should

be tested in free air, orientated in the horizontal plane. The excitation signal

used should be a band filtered pink noise extending 1 decade upward from the

manufactures stated lowest usable frequency.

The power is then calculated as the squared voltage dived by the minimum

driver impedance. The rated power is then the power the driver can withstand

for 2 hours without permanent change in acoustical, mechanical or electrical

characteristics greater than 10%.

Some other common power rating types are:

• The RMS power is the power obtained using the RMS voltage for its calcula-

tion.

• The peak power uses the peak voltage for its calculation. The peak power isn’t

particularly useful, as it typically cant be sustained for more than a second or

so. Driving the loudspeaker continuously at the peak power would certainly

cause damage.

• The program power is a term that derives from the old swept sine wave tests

that were used for loudspeaker power. Although having no specific meaning

nowadays, it’s generally accepted that it is the amount of power that a speaker

can handle during typical music or ‘typical program’ where frequency content

and power constantly vary. For most manufactures it is simply 2 times the

average power.
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So far we have talked in quite some detail about the mechanical and acoustical

design of loudspeakers. But what about their electromagnetic design? At the

heart of any modern moving coil loudspeaker is a permanent magnet. How do

we design an optimum permanent magnet?

In the olden days, electromagnets were used instead, this was basically because

of a lack of adequately strong permanent magnets. This electromagnet style of

loudspeaker is known as a field coil loudspeaker, and are very rarely used these

days.

So we already have a basic understanding of the general workings of the loud-

speaker magnet. We have a voice coil that sits in magnetic field created by

the permanent magnet. When a current is run through the voice coil we get

a force that drivers the diaphragm upwards. When the current is revered, the

force changes direction and drives the diaphragm downwards. And so we have a

vibrating diaphragm.

What sort of permanent magnets can we use in loudspeaker design? It all

depends on how much you want to pay. For example, we could use a rare earth

magnet like neodymium (NdFeB, Neodymium Iron Boron). These magnets are

terrifically strong, and so we only need small ones. This would save us consider-

able weight, but and the expense of cost. Alternatively, we can use a standard

ferrite material (a ceramic compound that includes iron oxides). These are less

powerful, but much cheaper. So typically, for the same sort of performance,

lighter loudspeaker are more expensive, because stronger magnets are used (in a

smaller quantity).

9.1 Basic Electromagnetism

So what is a magnetic field? We can think of it as a continuous field that

permeates through space, and has the ability to exert a force on certain (magnetic)

objects.

How do we create a magnetic field? Well there are two ways. You can generate

a magnetic field by having electrical charge in motion. For example, the current

running through a conductor (say a length of straight wire). Suppose some

electrical charges (in the form of electrons) move left to right. This motion will

create a magnetic field that circulates the wire according to the right hand rule

(thumb in the direction of current flow). For a DC (constant flow) current, we

get a constant magnetic field that wraps around conductor. For an AC current,

the magnetic field oscillates, changing direction in time with the varying current.

The other way to generate a magnetic field is with permanent magnets. In

a permanent magnet there is no current flow. However there are still charged
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particles are in motion within the material. Electrons have an orbit and a spin.

These generate what are called electron magnetic dipole moments (the term

magnetic moment really describes the magnetic strength and orientation or the

magnet). You can almost think of a single atom as a tiny little bar magnet. Now

when enough of these tiny bar magnets are aligned in the same direction, we

create a permanent magnet.

9.1.1 Magnetic Fields

So how do we characterise the magnetic field generated by a moving charge or

permanent magnet? We use what is called the magnetic strength H. Its units

are amperes per meter, e.g. magnetic field strength of 1 ampere/m is generated

at the centre of 1m diameter loop of conductor when 1 amp of current is applied.

Unfortunately, there is another closely related field which is also often termed

the ‘magnetic field’. This second field is denoted by B, and is often referred to

as the magnetic flux density. We can think of the flux density as a measure of

how closely packed together the field lines of a magnet are. Its important to

understand that these two fields are fundamentally different. The quantity H

denotes the strength of the field that is generated by the magnet. The quantity

B denotes the response of the medium to that field. The two are related by what

is called the magnetic permeability of the material.

9.1.1.1 Brief Flux Interlude

So this term ‘magnetic flux’, what is it? It quantifies the amount of a magnetic

field flowing through a surface. It is important to remember that B is a vector

field, so direction is important! The magnetic flux looks at the effect that the

field has on an area. The angle that the field lines intersects this area is impor-

tant. A field line passing through at a glancing angle will only contribute a small

component of the field to the magnetic flux (because it includes only the com-

ponent of the magnetic field vector which is normal to test area). A field line

passing through at 90 deg (i.e. normal) will provide maximum flux.

θ

Figure 9.1: Magnetic flux

For a uniform area A the magnetic flux can be expressed as,

Φ = BA cos θ (9.1)

where B is the flux density and θ is the angle at which the area is orientated see

figure 9.1). The B field describes the density of this flux over the whole region.

When θ = 0, i.e. the B field is normal to the surface, Φ = BA. When θ = 90◦

i.e. the B field is parallel to the surface, Φ = 0.

9.1.2 Magnetic Hysteresis

In free space, the flux density B and the field strength H are linearly related by

the equation,

B = µ0H (9.2)

where µ0 = 1.25663753×10−6 is the permeability of free space. This tells us that

the flux density (or how tightly packed the field lines are) increases proportionally

with the strength of the field generated.
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However, when looking at the flux density in a material things get a bit more

complicated. In a material the relation between flux density and field strength

can be non-linear.

For non-magnetic material we have nothing to worry about, the flux density

and field strength remain linearly related, but via a different constant. Non-

magnet materials are often specified by their relative permeability µr which when

multiplied by the permeability of free space, give the materials magnetic perme-

ability.

B = µrµ0H (9.3)

For magnetic materials the flux density and field strength are related by a complex

non-linear process, which we will cover shortly. But first we should introduce the

different types of magnetism that exist, because there is more than one!

B

H

Gradient µ0

Gradient µrµ0

Figure 9.2: Relation between field strength and
flux density for free space and non-magnetic ma-
terials.

So in general there are 5 types of magnetic materials.

• Diamagnetic and paramagnetic materials only interact weakly with a magnetic

field and the very weak effect disappears when the field disappears. These are

typically considered non-magnetic materials.

• Magnetic materials can be either Ferromagnetic or Ferrimagnetic. Ferromag-

netic materials are metals or metal alloys, like neodymium. In these materials

the atoms are arranged in a lattice, and their magnetic moments can align

parallel to each to generate a magnetic field. Ferrimagnetic materials are iron

oxide based compounds, also known as ceramic magnets. Like Ferromagnetic

materials, the magnetic moments align, but not all of them. As such, Ferri-

magnetic materials are less strong than Ferromagnetic.

• Finally we have antiferromagnetic materials. These are like ferromagnetic but

it turns out that for every moment pointing upwards, there is another one point

downwards, and so the magnetic moments end up cancelling out.

So ferromagnetism is what we are interested in. But how does it work? We can

use the theory of magnetic domains to explain how materials can be magnetised.

Here is the idea.

No field

Weak field

Strong field

Figure 9.3: Domain extension during magnetisa-
tion

Atoms create their own magnetic dipole moments. These dipole moments align

over regions which we call domains. What creates a materials net magnetic field

is the bulk effect of all of these domains acting together. When demagnetised

these domains are orientated randomly across the material, and so the net effect

is zero.

Now if we were to place the material in an externally generated magnetic field

we can actually cause the domain walls to move. The domains favouring the

external field are expanded, whilst those that oppose it are made smaller. Now

the bulk effect is influenced more by the larger domains, and so the material is

creating its own magnetic field (which is currently superimposed on top of the

external one.)

For small movement of the domain walls this process of magnetisation is re-

versible if the applied field is reversed. For large movements however, the process

can not be reversed by simply reversing the magnetic field. Extra work has to be

done to move the walls back to a randomly orientated state.

It is this non-linear hysteresis process enables permanent magnets to exist.

Hysteresis is the dependence of the state of a system on its history.
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Shown in figure 9.4 is the hysteresis curve of a typical ferromagnetic material.

It is a plot that represents the relation between an applied field strength H and

the induced field or flux density B.

Now first thing, there are two curves here. The normal curve represents the

total field, this includes the applied field and the field generated by the magnet

itself. The intrinsic curve represents only the field generated by the magnet (i.e.

does not include the applied field).

So lets follow the process of magnetisation. We start with our bulk zero

magnetic field. Slowly we start to apply an external magnetic field, moving along

the x axis. Following the intrinsic curve we see that the material slowly starts

to generate its own magnet field. Eventually we reach a point where no matter

the increase in the applied field, we can get no more out of the material (the B

field reaches saturation). This is the saturation point of the material (will vary

depending on the type of material).

Now we reduce the applied field, moving backwards along the x axis, until the

applied field has been turned off, H = 0. The intrinsic field falls a little bit, but

not to zero. We have no created a permanent magnet.

Now lets start reversing the applied field, going along the negative x axis. The

first interesting point we reach is where the total field (i.e. the normal curve -

the combined applied and generated field) equals 0. This means the applied field

(which is now opposite in direction) cancels exactly with the field generated by

the material. This point is known as the coercive force HC . But if we look at

the intrinsic field, we can see that the material is still quite strongly magnetised.

So we continue to increase the strength of the applied field (in the opposite

direction still). Eventually we reach a point where the applied field is strong

enough to demagnetise the material, i.e. the intrinsic curve has reached 0. This

point is called the intrinsic coercivity, HCi.

If we continue to increase the applied fields strength we will end up creating

a permanent magnet with an opposite polarity as we had before. This procedure

then repeats forwards and backwards, giving up this continuous hysteresis curve.
H

B
Normal

Intrinsic

BsatBr

Hci

Hc

−Br

Figure 9.4: Hysteresis curve for ferromagnetic
material.

For loudspeakers we want to look at the intrinsic curve. In particular it is

the flat region above HC that we are interested in. In this region we get a

relatively constant flux density from the magnet. We need B to be constant in

out loudspeaker model, as this is what enables us to model the force as a linear

function of the applied current. This means that we need to make sure that the

field generated by our voice coil H is within these limits. If the voice coil field is

too large then you can accidentality demagnetise your loudspeaker. That said, the

more likely cause of demagnetisation is due to the heat generated by operating

the loudspeaker at high levels.

So it is this second quadrant that is most important for use. It is called the

demagnetisation curve, and it tells us about the resilience of a magnet to an

external field.

9.1.3 Lorentz Force

Before we look at the structural design of magnets for loudspeakers, lets look

a little more closely at how they drive our voice coil. We are interested in the

passage of electrons (i.e. a current) through the voice coil (i.e. a wire), and

the effect of the magnetic field B. To understand this we have to introduce the
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Lorentz force law.

So what does this force law say? It tells how a magnetic field influences

a charged particle in motion. It states that force on a particle of charge q is

proportional to the electric field ~E present, and the cross product of the particle

velocity ~v and magnetic field ~B.

~F = q
(
~E + ~v × ~B

)
(9.4)

The direction of this force can be determined using the right hand rule. If your

index finger points in the direction of the charge direction, your middle finger in

the direction of the magnetic field, your thumb will indicate the direction of the

resulting force, ass illustrated in figure 9.6.

Figure 9.5: Right hand rule.

Now, recall that velocity is the distance travelled over the time taken,

~v =
∆~x

∆t
. (9.5)

Lets substitute this into the Lorentz force law (ignoring the electric field term

because we are considering the effect of a permanent magnet).

~F = q

(
∆~x

∆t
× ~B

)
=

q

∆t

(
∆~x× ~B

)
(9.6)

N SB I

F

B

F

I

Figure 9.6: Lorentz force on a charge carrying
conductor.

Now recall that current is defined as the rate of flow of charge,

i =
q

∆t
(9.7)

which when substituted into the above yields,

~F = i
(

∆~x× ~B
)
. (9.8)

Equation 9.8 states that the force ~F is proportional to current, and is in the di-

rection of particle displacement cross the field direction. To simplify this equation

we can rewrite the cross product in term of the vector magnitudes and the angle

θ between them,

∆~x× ~B = |∆~x|| ~B| sin θn̂ (9.9)

where n̂ is a unit vector in the direction perpendicular to ∆~x and ~B. Noting that

the total distance travelled by charged particle is the length of the voice coil, the

above may be rewritten as so,

~F = i|∆~x|| ~B| sin θn̂→ Bli. (9.10)

This is exactly the linear force equation that been assuming thus far. We have

now shown that it is simply a consequence of the Lorentz force law.

9.2 Magnet Structure

The general idea in magnet design, is that we can use metal components (typically

steel) to help direct the magnetic field lines, concentrating them where necessary

(i.e. in the voice coil gap).

For practical reasons voice coils are cylindrical, so typical magnets are toroidal.

The magnetic field lines (flux) of a toroidal magnet prefers the outside path. This

is because like fluxes repel each other (much like the north end of two magnets

repel). Shown in figure 9.7 the field lines of a stand-alone toroidal magnet.
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Figure 9.7: Stand-alone toroidal magnet with
field lines. Flux tends to take path outside the
ring magnet.

By including a pole pieces (i.e. a structure through which the magnetic flux

prefers to travel) we can provide the flux with a much easier path. We can think

of the magnetic flux as analogous to current; it prefers the path of least resistance.

The magnetic permeability of steel, for example, is much much greater than air,

so the flux would pass mostly through a steel pole piece. Shown in figure 9.8

is an example of a pole piece design for the same toroidal magnet. Using this

Figure 9.8: Toroidal magnet with central pole
piece to redirect the field lines. high leakage of
conventional exterior magnet.

design we can concentrate the flux density over the small gap between the pole

piece and the other end of the magnet. This gives us a much greater force when

applied over a voice coil (which fits within this small gap).

There will however, always be some amount of leakage, i.e. some flux always

decides to travel around the outside of the magnet. The aim of magnet design is

to minimise this flux leakage, and thus maximise the useful flux across the gap.

With this in mind we may wish to improve the pole piece design for our ring

magnet (perhaps one that follows the natural flux path?). Figure 9.9 offers such

a design. We still have the same ring magnet, but we have the pole piece extend

Figure 9.9: Toroidal magnet with external pole
piece to redirect the field lines according to their
natural path.

around the outside. This requires that the voice coil is kept outside the magnet

(which means we can have a longer coil). This new pole piece arrangement also
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follows the natural flux path, and so reduces the leakage even further. Shown in

figure 9.10 is a close up of the field lines through this external pole piece.

Figure 9.10: Field lines through a toroidal mag-
net with external pole piece.

It is clear that the field lines follow tightly the pole piece shape, and concentrate

across the voice coil gap. Notice however, that the field lines are not all parallel

across this gap. We have some fringing around the top and bottom. We need to

be careful about this, because it will introduce non-linearities.

One of the most important requirements of a magnet’s design is that it achieves

a near constant flux density across the gap. This is because we want the voice

coil to receiver the same amount of forcing irrespective of its displacement. Say

if the flux were much less near the top and bottom of the voice coil gap, then

when the driver is displaced sufficiently far, the force exerted on the voice coil

will be weaker, due to the reduced magnetic flux. What effect does this have? It

introduces a non-linear force model, where the force depends on the displacement

of the driver. Not only would this hugely complicate our equivalent circuit model,

but it would also introduce subjectively unwanted artefacts. Imagine driving the

loudspeaker with a pure sine wave, as the peaks of the sinusoid reach maximum

extension of the voice coil, they are clipped due to the reduced motion. This is

distortion. These are complications that we want to avoid.

Figure 9.11: Distribution of flux density across
the voice coil gap.

So what are we trying to achieve with our magnet design? A uniform flux

distribution across the entire gap. If we were to plot the flux density as a function

of distance along the voice coil gap, we want to maximise this flat region. Shown

in figure 9.11 is the flux distribution across the external pole piece gap in figure

9.10. Notice the flat top. This is the region in which we want to operate our

loudspeaker. Across this region the voice coil receives the same flux density. What

Figure 9.12: Pole piece extension.

can we do to flatten, or smooth out the flux density across the gap? Two options.

Number 1, we can re design the magnet pole piece so that it extends beyond the

gap. This would reduce the fringe flux at the top of the gap, as in figure 9.12.

Alternatively, we can play around with the voice coil sizing.

9.3 Voice Coil Design

the voice coil is the part of the loudspeaker where the driving force (i.e. the

Lorentz force) develops. We want this driving force to be linear (i.e. not to

depend on the displacement of the voice coil). If the voice coil moves too far the

flux density will decrease and non-linearities will occur.

For a tweeter (high frequency driver) the movement of the voice coil is very

small. Since the flux naturally extends a little beyond the gap the voice coil can

be made the same size as the gap without introducing any non-linearities.

For a woofer we require a much larger displacement to achieve the level wanted.

So to ensure a constant flux the coil has to be made either longer or shorter than

the gap.
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If the coil is made longer than the gap the main passage of flux will remain

within the area of the voice coil (to some extent). This called an overhung coil.

The downside of this design is that it is less efficient, as the part of the voice coil

that sits outside of the flux isn’t really doing anything. Its just extra baggage.

Although the heavier coil reduces the sensitivity of the driver, if the coil does

exceed its limit, the non-linearity is ‘soft’, i.e. has a slow on set.

Gap height
Coil height

Gap height
Coil height

Under-hung coil

Over-hung coil

Figure 9.13: Voice coil sizing for a woofer design.

If the coil is made shorter than the gap as it is displaced in remains entirely

within the uniform flux region. This type of design is called an underhung coil.

The downside of this design is that the smaller coil has less windings and so

generates a smaller force. As such it requires a larger magnet structure and is

therefore heavy and more expensive. If the coil exceeds its limits, we get a hard

non-linearity, i.e. it has a quick onset.

9.4 Magnetic Circuit Design

Like we did for the mechanical and acoustic domain, it is possible to formulate an

equivalent circuit analogy for magnetic systems. To do so we make the following

equivalences,

MMF ↔ V (9.11)

Φ↔ i (9.12)

R↔ R (9.13)

where the magneto-motive force MMF is equivalent to voltage V , magnetic flux

Φ is equivalent to electrical current i, and magnetic reluctance R is equivalent to

electrical resistance R.

These quantities are related through Hopkin’s law, an equivalent of Ohm’s law

for magnetic circuits,

Φ =
MMF

R
. (9.14)

Note that although conceptually we may interpret the MMF as a ‘force’ that

‘drives’ the flux through a magnetic circuit (this is an analogy after all), it is

important to remember that it is not a true force since flux doesn’t flow, it is a

fixed field. Magnet

2

6

7

4

3

15

Figure 9.14: Transmission line enclosure.

An obstruction in a magnetic circuit to the magnetic flux is called reluctance.

In magnetic circuit design is more typical to deal with the reciprocal of reluctance,

the so called permanence,

P =
1

R
. (9.15)

The magnetic permanence of a material is determined by its geometry and relative

permeability as so,

P =
µrµ0A

L
. (9.16)

where µr is the relative permeability of the material, A is its cross sectional area,

and L is its length.

Consider the typical toroidal loudspeaker magnet design in figure 9.14. The

labelled elements correspond to:

1 Magnet MMF

2 Top plate reluctance
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3 Centre pole reluctance

4 Gap reluctance

5 Magnet perimeter leakage

6 Gap fringing flux

7 Gap fringing flux

Shown in figure 9.15 is the equivalent magnetic circuit

MMF1

R2

R4

R3

R6 R7R5

Figure 9.15: Equivalent magnetic circuit for
toroidal loudspeaker.

Neglecting the pole piece permanence and any parallel flux paths, the total

permanence of the magnet structure is given by,

PT = Pf + Pg (9.17)

where Pf , and Pg are the permanences of the fringe paths and the air gap.

The magneto-motive force across the magnet element is given by the product

of its length and field strength,

MMFm = HmLm. (9.18)

Similarly for the air gap,

MMFg = −HgLg. (9.19)

Note that the air gap MMF is an opposing one, unlike the magnet element.

For now let us assume that there are no fringe flux paths, and that the flux

is contained entirely within the magnet, pole piece and air gap. In this case,

according to Kirchhoff’s 1st law (conservation of current) the flux through the

magnet element must be equal to the flux through the air gap,

Φm = Φg. (9.20)

The flux may readily be expressed in terms of a flux density and corresponding

area,

BmAm = BgAg. (9.21)

Under the assumption the pole piece/fringing path MMF s are negligible,

according to Kirchhoff’s 2nd law (conservation of energy) the magnet and gap

MMF s must sum to 0,

MMFm +MMFg = 0. (9.22)
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From equations 9.18 and 9.19 we have,

HmLm = HgLg (9.23)

which, recalling that Hg =
Bg
µ0

can be rearranged as,

Hg =
HmLm
Lg

=
Bg
µ0
. (9.24)

From equation 9.21 we have,

Bg =
BmAm
Ag

(9.25)

which can be substituted into equation 9.24 to yield,

µ0
HmLm
Lg

=
BmAm
Ag

. (9.26)

From the above we can obtain the following equation,

Bm
µ0Hm

=
LmAg
LgAm

. (9.27)

Equation 9.27 is the load line of the magnetic circuit. The intersection of this line

with the demagnetization curve represents the operating point of the magnet. In

terms of the demagnetization curve the flux density has decreased from Br, to

Bm and a negative potential LmHm has developed which is equal to the potential

drop in the air gap LgHg.

Note that equation 9.27 was derived under the assumption that a) all the flux

is contained within the magnet, pole piece and air gap, and that b) that the pole

piece/fringing MMF s were negligible.

To account for these we begin by defining the leakage flux factor,

σΦ =
φm
φg

> 1 (9.28)

where σΦ represents the proportion of flux that is lost (e.g. through fringing

paths). From the above we have,

Φm = σΦΦg (9.29)

Similarly, we can define the MMF loss factor,

σMMF =
MMFm
MMFg

> 1 (9.30)

where σMMF represents the proportion of MMF that is unaccounted for (e.g.

through pole pieces or fringing paths). From the above equation 9.22 becomes,

MMFm + (−)σMMFMMFg = 0. (9.31)

Equations 9.31 and 9.29 lead to the load line equation,

Bm
µ0Hm

= − σΦ

σMMF

LmAg
LgAm

(9.32)

or

Bm = − σΦ

σMMF

LmAg
LgAm

µ0Hm. (9.33)
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The load line equation describes a negative slope on the magnet demagnetiza-

tion curve. The right hand side term σΦ

σMMF

LmAg
LgAm

is often called the permeance

coefficient PC .

Usually the designer will select the dimensions so as to operate at given

Bm/Hm ratio. Often it is the point BHmax where the product Bm Hm is

at a maximum and consequently the magnet’s volume will be a minimum. From

equation 9.21 and 9.23, it is simple to show that,

Vm = LmAm =
BgAgHgLg
BmHm

(9.34)

where Vm is the volume of the magnet. Clearly the maximum value of BmHm

corresponds to the minimum volume Vm.

The gradient of the load line, i.e. equation 9.32, is called the permanence

coefficient. It relates the magnet’s field strength and flux density for a given

magnet design and gap geometry. Increasing the gap area, or decreasing the gap

length will increase the permanence coefficient, moving the working point up the

normal curve. In the limit that the gap length tends to zero the gradient will tend

to infinity, i.e. a vertical line. In this case we have a closed magnetic circuit, i.e.

there are no negative potentials, and magnet’s flux density corresponds to the

remanent flux density Br.

9.4.1 Load-line

Equation 9.33 is the key result of this chapter. It describes how the B and H

fields in a magnetic circuit are related to one another given that there is an air gap

present. To improve the efficiency of a loudspeaker driver we want to maximize

the flux density Bm (this is what drives the loudspeaker, via the Lorentz force)

given a field strength Hm (this is a property of the magnet). The presence of an

air gap acts as an obstruction to the ‘flow of flux’, causing a decrease in its density.

The intersection of the load-line and the normal-curve defines the operating point

of the magnet (see figure 9.16). The larger the air gap or the smaller the magnet,

the further down the normal curve the operating point moves. The position of

the working point is critical to ensure that the H field is not increased to a

point where the field could exceed Hci and the magnet will become permanently

demagnetised.

Figure 9.16: Example of a load line and its inter-
section with the normal curve, i.e. the operating
point.
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9.4.2 External Magnetic Fields - Operating Loudspeaker

In its passive state (i.e. with no external current applied) the loudspeaker mag-

net is operating at the working point, −Hop. This corresponds to the negative

potential introduced by the air gap. The resulting flux density is given by Bop.

Whilst operating an alternating current runs through the loudspeaker’s voice

coil. This current interacts with the permanent magnetic field via the Lorentz

force, causing a periodic displacement of the cone. However, if we run a current

through the voice coil we also introduce an additional induced magnetic field,

Hext. This external field has the effect of shifting the load-line, and with it the

working point of the magnet. See for example figure 9.17, where an additional

field ∆H is applied. For small currents, the working point will oscillate forwards

Figure 9.17: Example of an external field shifting
the load-line and working point.

and backwards, remaining at all times on the normal curve. Clearly, if the applied

current is too great, the additional field will shift the working point over the knee

of the normal curve. Now when the external magnetic field is reversed, rather

than the working point following the normal curve it follows a new path parallel

to, but below, the normal curve. This is called the recoil path. At this point the

loudspeaker has suffered some permanent demagnetisation.

We can use normal curve knee to specify the maximum external field strength,

and therefore the maximum permissible current.

9.4.3 Temperature Dependence

Another really important feature of a permanent magnet is its temperature depen-

dence. The normal curve of a magnet can be strongly dependent on temperate

and material. Shown in figure 9.18 is an example of Neodymium.

Figure 9.18: Normal curve temperature depen-
dence of Neodymium.

Between +/- 20 degrees the normal curve has a broad flat slope. This is good

as it means we can avoid demagnetisation around room temperature. At 150

degrees however, the knee of the normal curve occurs much earlier. Now we

run the serious risk of demagnetisation if the speaker is driver too hard. This is

particularly important for loudspeaker, because they can get very hot! Remember,

they are terribly inefficient (less than 5%!). This energy has to go somewhere

(heat!). Also notice that as we increase temperature, the normal curve drops in

level, i.e. the sensitivity is reduced.

Shown in figure 9.19 is a ceramic ferrite example. Again, the load line is vary-

ing greatly with temperature. Again, we see that by increasing the temperature
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the normal line drops. Interestingly however, unlike neodymium which became

less linear at high temperature, this ceramic magnet gets more linear at high tem-

peratures. In this case our loudspeaker could operate safely at high temperatures,

but at low temperatures we run the risk of demagnetisation!

Figure 9.19: Normal curve temperature depen-
dence of Neodymium.

9.4.4 Magnet Performance

Shown in figure 9.20 is a typical data sheet supplied with a magnet used for a

loudspeaker. Both the normal and intrinsic curves are shown for a number of

temperatures. Also shown are a series of load-lines. Lets use this chart to assess

the performance of its associated magnet.

To start let us suppose we have calculated the permeance coefficient for a

particular gap geometry. This may be done using the load-line equation we derived

from our magnetic circuit, or some more complex model (e.g. a Finite Element

model). Say the value obtained is 0.6. To find the operating point of the magnet

we follow the 0.6 load-line to where it intersects the normal curve. Considering

the 20◦ normal curve, this occurs at approx Hop = −7.5, at which Bop = 4.5.

We can see that in this region the normal curve is in its linear regime. For small

applied fields the working point will move forwards and backwards, remaining on

the normal curve.

Figure 9.20: Magnet data sheet showing normal
and intrinsic curves and varying temperatures.

Now suppose we increased the applied field, say to -11. We have now gone

past the knee of the normal curve. Now when the external field is removed we

follow the recoil path (parallel to the normal curve, but starting at maximum

working point). The new working point (in the absence of an applied field) is

now approx Hop = −7 with Bop = 4. We have therefore caused a permanent

demagnetisation.

Suppose instead of applying an external field we increased the temperature of

our magnet to 80◦. In this case we can also see that the working point sits on the

knee of the normal curve. At this temperature it would appear that any external

field would push the working point over the knee and cause a permanent demag-

netisation. Clearly the maximum admissible current depends on the temperature!
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This is why it is important to design magnet systems in such a way that they can

easily dissipate heat.



Part II

Cross-over Design



10 Introduction

We are interested in loudspeakers with broadband (preferably flat) frequency re-

sponses. So far we have been focusing on extending the low frequency response

by modifying the enclosure (e.g. sealed, vented, transmission line, etc.)

It is important to acknowledge, however, that any particular loudspeaker has

only a finite useful bandwidth. At low frequencies loudspeakers are limited for a

number of reasons. Firstly, the radiation load. The real part of the radiation load

dictates the radiated sound pressure (i.e. the energy dissipated). It is proportional

to the square of wave number and driver radius. Consequently, we get greater

radiation at high frequencies. I.e. it is harder to push air around at low frequencies.

To compensate for this frequency dependence we have to make the surface area

of the driver much greater (this is why low frequency loudspeakers have large

drivers). At low frequencies the driver is also limited by its available travel. Some

smaller drivers make up for their size by allowing a greater driver throw (i.e. larger

amplitude of motion).

At high frequencies the motion of the driver is limited by the inertia of the

moving mass (operating in the mass controlled region). Large loudspeakers are

heavy; moving a heavy mass very quickly (i.e. at HF) is difficult! This limits the

output power of the loudspeaker.

At high frequencies the inductance of the voice coil also comes into play,

increasing the electrical impedance of the driver. This has the effect of acting

like a low pass filter.

Before we even reach these high frequency issues loudspeakers begin to ex-

hibit non-ideal behavior. Firstly, large drviers are very very directional at high

frequencies, making them unsuitable. This is why smaller drivers, i.e. tweeters,

are typically used for high frequency radiation. The low mass of the tweeter also

avoids the issue of extra mass! The other problem is that at high frequencies

loudspeakers no longer behave as rigid pistons. At high frequencies the driver

starts to exhibit flexible modes (i.e. cone break up). This causes a very peaky

response with respect to frequency. This is something we want to avoid.

So what is the solution? Well we have accepted the fact that different sized

speakers are better at different frequencies. So why not use more than one

loudspeaker? Why not split the frequency range into several smaller ranges, and

used a different loudspeaker for each? This is the general idea behind mutli-driver

loudspeakers. At low frequencies we want to use a large driver, which can displace

lots of air, i.e. a woofer. In the mid frequency range we use ‘squawkers’ which

is small than a woofer. Finally at high frequencies we use a tweeter. So as the

frequency range increases, we use a small loudspeaker driver to radiate it. This

reduces the moving mass, and also improves the overall directivity.

Although this sounds like a lot of effort, it is much easier than trying to design
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Figure 10.1: Cross-over idea - divide and con-
quer.

a single driver that covers the full range 20Hz to 20kHz.

A loudspeaker design engineer will do his/her best to design a loudspeaker that

has a flat frequency response over a certain frequency range. To design a multi-

driver system, we want the response of a driver to fall off in a smooth controlled

way (we might want this roll off to be quite quick!). The point is that as one

loudspeaker begins to roll off, another loudspeaker will begin to ‘roll up’. These

two contributions will cross-over at some frequency (the crossover frequency).

Hopefully, if everything is designed correctly, the two drivers will support each

other over this region and lead to a flat frequency response.

So how do we design this sort of cross over? It might be possible to use

each drivers electro-acoustic design, changing the mass, damping and stiffness to

achieve a particular roll off.. But this will make for a rather in flexible product.

Instead, it is easier to use electronic filters to control what happens over this

cross-over region. E.g. we choose a driver that works well at low frequencies,

and apply an electronic low pass filter to its input signals. We can then design

a complementary filter that slow introduces a second mid ranger driver to take

over at the cross over frequency.

Figure 10.2: Passive crossover design.

So in general there are two ways of designing cross-overs, active or passive:

• Passive crossovers use only passive components (i.e. resistors/capacitors/in-

ductors)

• Active crossovers use op-amps/other types of amplifiers to carry out the filter-
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ing.

Another important difference between active and passive crossovers is where you

place the amplifier, before or after the crossover.

Figure 10.3: Active crossover design.

So what are the advantages/disadvantages?

The filters of a passive crossover must be capable of working with large signal

amplitudes. This can cause some problems with regards to heat dissipation (there

are always some losses). This requires some good plumbing in high power appli-

cations. This is how it is usually done in standard domestic Hi-Fi and TV/Radio.

In an active crossover, the filters are not subject to large amplitudes and so power

dissipation via heat is less of a problem. This is the main advantage of active

type crossovers.

So what’s the disadvantage of active crossovers? Well, we need to have an

amplified for each driver! This can lead to a very large increase in the cost of

a unit. This is why active crossovers are only seen in high end Hi-Fi or in high

power PA systems.

Most Hi-Fi systems use passive crossovers, due to their cheep cost. The output

of an amplifier is plugged straight into the back of the loudspeaker cabinet, inside

which there is crossover network doing the high/low pass filtering.

Although passive filters are cheap and simple to design, active filters offer

superior flexibility, you can design any frequency or phase response you like! There

is also no need to worry about the impedance loading of the amplifiers (passive

components may underload the amp). Active filters also have less losses, and can

even be used to compensate for delays. This superior flexibility however, comes

at a cost. Also, active filters require an external power supply.

There are lots of ways to design filters, but there are three main design choices;

the type, cut-off and order. The type of filter describes the general shape of the

filters frequency response, i.e. low pass, high pass, band pass, band stop, etc.

The cut off frequency describes the frequency at which the filter begins to act on

the signal (e.g. the minus 3dB point of a low pass filter). This frequency is tuned

by adjusting the circuit’s component values. The order of a filter determines the

steepness of the roll-off, as well as the complexity of the circuit.

Designing a crossover filter is all about compromise. Too low an order and the

roll off is too shallow and there will be significant overlap of the drivers operation.

This can cause phase issues due to the different positions of the drivers. If the

order is too high you can get unwanted artefacts in the phase, timing and transient

response of the system. E.g. a high order/a steep roll off in frequency will cause
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a ringing effect at the resonance of the system. Also, high order filters require a

greater number of components.



11 Practical Filter Design and the Prototype Filter

At the heart of any cross-over is a pair (perhaps more in the case of a multi-driver

loudspeaker) of matched high/low pass filters, design such that their combined

output provides a smooth transition between the two driver’s operating regimes.

Towards the beginning these notes we looked at some simple high/low pass filter

circuit designs (see figures 3.9 and 3.11). Before reading on from here I would

recommend going back over these to refresh your filter memory!

Now assuming you memory have been refreshed, lets start off by looking at

what happens when you connect two drivers in parallel to the same amplifier.

In practice amplifiers are designed to have a very very small source impedance.

This means that the voltage does not drop when a load is applied. This means

that if we connect multiple filters in parallel (i.e. changing the amplifier load),

the voltage supplied doesn’t change (the filters are uncoupled). This is good,

we want the amplifier to behave as a constant voltage source. Lets look at an

example.

In a two way passive loudspeaker system, the input to each loudspeaker will

be connected to the output of an appropriate cross-over filter (high pass or low

pass). The input of each cross-over filter will be connected to the output of a

single amplifier. Together, the loudspeaker drivers, cross-over filters, and ampli-

fier form single circuit, as in figure 11.1, where the amplifier is represented by

VS

i ZS

ZLF ZHFVL

Figure 11.1: Low and high frequency drivers (in-
cluding cross-over filters) connected in parallel to
an amplifier with internal impedance ZS .

an ideal voltage source VS with a series impedance ZS , and the low/high fre-

quency drivers, along with their associated cross-over filters, are represented by

the parallel impedances ZLF and ZHF .

The total load on the amplifier is simply the combined driver impedance,

ZL =
ZLFZHF
ZLF + ZHF

. (11.1)

The voltage supplied to the parallel drivers VL can now be determined using the

potential divider rule,

VL = VS
ZL

ZS + ZL
. (11.2)

Now we can see that if the source impedance is very very small ZS ≈ 0, the

above fraction is approx. 1. In this case the voltage across the loudspeaker VL is
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the same as that of the ideal voltage source VS . There is no effect on the output

voltage as more speakers are connected in parallel.

This makes the design of cross-overs much easier, as we can design each

filter/driver circuit separately. I.e. we don’t have to worry about their interaction.

11.1 Second Order Low Pass

So far we have only considered simple first order low/high pass filters. Although

nice and simple, first order filters are not typically used in cross-over applications.

Their attenuation is too gradual, they don’t cross-over quick enough! We are

interested in filters with more rapid attention, i.e. high order. Lets start by look

at a more useful second order filter, starting with the low pass.

Shown in figure 11.2 is a second order low pass filter, with a loudspeaker driver

of impedance ZLS attached to its output. Previously when we looked filters, we

didn’t actually consider what they would be connected to, i.e. we didn’t include

the effect of the loudspeaker driver! Now lets derive the transfer function Vout/Vin

VS

i L

C ZLS

Figure 11.2: Second order low pass filter with
loudspeaker loading

of this filter. The total output impedance Zout will be the parallel combination

of the capacitor and loudspeaker impedance,

Zout =
ZCZLS
ZC + ZLS

. (11.3)

Recall the potential divider rule, and substitute in the input/output impedance,

Vout
Vin

=
Zout

Zin + Zout
=

ZCZLS
ZC+ZLS

ZL + ZCZLS
ZC+ZLS

. (11.4)

Now we want to rearrange this equation to get a 1 in the numerator. We can do

this by multiplying the top and bottom by one over the numerator,

Vout
Vin

=
ZCZLS
ZC+ZLS

ZL + ZCZLS
ZC+ZLS

×
ZC+ZLS
ZCZLS
ZC+ZLS
ZCZLS

=
1(

ZL + ZCZLS
ZC+ZLS

)
ZC+ZLS
ZCZLS

. (11.5)

Now its just a case of simplifying this equation. Ill leave it to you to go through

the steps. You should end up with,

Vout
Vin

=
1

ZL
ZLS

+ ZL
ZC

+ 1
. (11.6)

Now lets substitute in the impedance for our inductor and capacitor,

Vout
Vin

=
1

jωL
ZLS

+ (jω)2LC + 1
. (11.7)

Voila! We have the transfer function of our filter. Notice anything interesting? It

depends on the loudspeaker impedance! This is very important. The loudspeaker

acts as part of the filter circuit.
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So, the filter transfer function depends on the loudspeaker impedance. Remem-

ber, the loudspeaker impedance depends on the driver, loading and the cabinet.

It is basically some complex frequency dependent function. So does this mean

that we need to design new crossover for every device? Usually what we do is

replace the complex loudspeaker impedance ZLS with its nominal electrical re-

sistance RLS . This is the value quoted by manufacturers. It is usually measured

as the lowest point above the free air resonance in the loudspeaker’s electrical

impedance. This everything a lot simpler as loudspeakers are typically designed

with standard nominal impedances (e.g. 4, 8, 16 ohms).

Later we will look at what effect simply ignoring the complex frequency de-

pendent part of the loudspeaker impedance has on the performance of the cross

over, and how we might attempt to correct for this. For now we will proceed on

the assumption that our loudspeaker driver behaves like a nice simple resistor.

11.2 Cross-over Alignment

Now that we have derived the transfer function of our cross-over filter the next job

is to determine the necessary component values to give us the response shape we

want. This involves also determining the cross-over frequency of our two filters.

If we want to use a pair of low/high pass filters two smoothly transition between

two drivers, we need to be able to find their cut off frequencies, so that we can

align them appropriately.

Lets derive the -3dB point of the low pass filter we just derived. Now remember,

-3dB is equivalent to the half power point. So we are interested in finding the

frequency ωc where the power (proportional to the magnitude squared transfer

function) is half, ∣∣∣∣VoutVin

∣∣∣∣2 =

∣∣∣∣∣ 1
jωcL
RLS

+ (jωc)2LC + 1

∣∣∣∣∣
2

=
1

2
. (11.8)

Recall that |Z|2 = <(Z)2 + =(Z)2, so

1

2
=

1

(1− ω2
cLC)

2
+
(
ωcL
RLS

)2 =
1

1− 2ω2
cLC + ω4

cL
2C2 +

ω2
cL

2

Z2
LS

(11.9)

which after group terms in ωc gives us,

1

2
=

1

1 + ω2
c

(
L2

R2
LS
− 2LC

)
ω4
cL

2C2
. (11.10)

So we now derived an expression that is only satisfied when the filter response

is -3dB. We want to determine the capacitor and inductor values that give us a

particular -3dB cut of frequency ωc. At the moment we have 2 unknowns (L and

C) but only one equation. This isn’t enough! We need another equation.

The issue is that there are lots of different types of filter that satisfy this

equation. To determine our capacitor and inductor values we need to decide on

the type of filter we want! There are a whole load of different filter types out

there. Luckily, we are only interested in one particular type: the Butterworth.

The Butterworth filter is particularly popular because its response shape (also

called an alignment) has the unique property that is it maximally flat (i.e. ex-

tends as far as possible without introducing ripple). In general the Butterworth
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alignment satisfies the equation,∣∣∣∣VoutVin

∣∣∣∣2 =
1

1 +
(
ω
ωc

)2n (11.11)

where n is the order of the filter. Together, equation 11.10 and 11.11 give us

two equations. We can use these to determine the capacitor and inductor values

that not only give us a -3dB of frequency ωc, but also satisfy the Butterworth

alignment.

In order that our filter transfer function equation satisfies the 2nd order But-

terworth alignment it is clear that we must have that,

ω2
c

(
L2

R2
LS

− 2LC

)
= 0 (11.12)

and

ω4
cL

2C2 = 1. (11.13)

This gives us two simultaneous equations, one of which can be solved to find the

cut off frequency directly,

ω2
c =

1

LC
. (11.14)

We can also take these two equations and derive equations for the capacitor and

inductor values that give a desired cut off frequency. Here are the steps:

Rearrange equation 11.13 to obtain the capacitance C,

ω4
cL

2C2 = 1→ C2 =
1

ω4
cL

2
→ C =

1

ω2
cL
. (11.15)

From equation 11.14 substitute LC = 1/ωc into equation 11.12,

ω2
c

(
L2

R2
LS

− 2
1

ω2
c

)
= 0→ ω2

c

L2

R2
LS

− 2 = 0 (11.16)

and rearrange for the inductance,

ω2
c

L2

R2
LS

= 2→ L2

R2
LS

=
2R2

LS

ω2
c

→ L =

√
2RLS
ωc

. (11.17)

Now substitute L =
√

2RLS
ωc

into C = 1
ω2
cL

,

C =
1√

2RLSωc
. (11.18)

Equations 11.17 and 11.18 give us the inductor and capacitor values required

to achieve a Butterworth alignment with a -3dB point of ωc, taking into acount

the nominal DC resistance of the loudspeaker driver, RLS .

Figure 11.3: Magnitude response of a 2nd order
low pass Butterworth filter (cut-off frequency is
marked in black).

Shown in figure 11.3 is an example response of a Butterworth filter, obtained

by substituting equations 11.17 and 11.18 into equation 11.7,

Vout
Vin

=
1

jωL
ZLS

+ (jω)2LC + 1
→ 1

1 +
√

2
(
jω
ωc

)
+
(
jω
ωc

)2 . (11.19)

Equation 11.19 represents a parametrised from of the Butterworth filter transfer

function. If you were to take its magnitude and square it, you would end up with

exactly equation 11.11. Have a go!
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Although the above analysis wasn’t particularly hard. . . it wasn’t exactly fun.

Also, for more complicated filters things get much much more horrible. We had

two simultaneous equations because we had two component values... Higher

order filter means more components, more components means more equations..!

So is there another way of designing filters? Yes! We can use tables of normalised

filter coefficients! But you will have to wait until later for this. Right now we

want to revisit our assumption that ZLS = RLS .

11.3 Complex Loudspeaker Impedance

So we made life a little easier for ourselves by assuming the loudspeaker impedance

was just the nominal resistance. We know in reality the true response is much

more complex.

So we have made life a little easier for ourselves by assuming the loudspeaker

impedance is just the nominal resistance. We know in reality the true response is

much more complex.

Figure 11.4: Low pass filter response with nomi-
nal resistive load, and complex loudspeaker load.

Shown in figure 11.4 is a comparison of the gain of a second order low pass

filter with a nominal resistive load and with a frequency dependent loudspeaker

impedance, including all of the electrical, mechanical and acoustical loads. Turns

out what we get is quite good. We can see that there isn’t a huge difference

between the two.

By assuming a nominal impedance we get very close to the correct answer.

The true response is a little bumpier and the roll off is more complex, and there

are some marginal differences in the –3dB point.

Figure 11.5: Radiated acoustic pressure with and
without low pass filter.

Perhaps it is more interesting to understand what happens at the loudspeaker

output? If we include a pistonic source model we can compare the acoustic

response with and without the cross-over. We can see that the cross-over filter

rolls of the response quite smoothly (the cut off is around 1 kHz). While there

is some difference near to the driver resonance, it really isn’t very large. So even

by assuming this nominal speaker impedance, we get an answer that isn’t too

terrible!

A little later on we will look at how we can improve our results even more, by

compensating for the loudspeakers complex impedance.

11.4 Low Pass Prototype

Okay, we have been through the analysis of a 2nd order low pass filter. But what

about other filter types? Different orders? High pass?

Filters are usually designed based on what is called a low pass prototype, and

it turns out that we have already been through the analysis of this filter (figure

11.2).

To convert this low pass prototype into a high pass, all we have to do is

interchange the capacitors and inductors, as in figure 11.6. As an exercise have

a go at deriving the transfer function for this filter, including the loudspeaker

loading. You should get,

Vout
Vin

=
1

ZC
ZLS

+ ZC
ZL

+ 1
=

1
1

jωCZLS
+ 1

(jω)2CL + 1
. (11.20)

Now providing we still want Butterworth alignment, the equations we derived
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VS

i
C

L ZLS

Figure 11.6: Second order high pass filter with
loudspeaker loading.

for the capacitance and inductance (11.18 and 11.17) are still valid (have a go

re-deriving them from the equation 11.20).

Substituting the L and C values for the Butterworth alignment into equation

11.20 yields,

Vout
Vin

=
1

1
jωCZLS

+ 1
(jω)2CL + 1

→ 1

1 +
√

2
(
ωc
jω

)
+
(
ωc
ω

)2 . (11.21)

Notice that compared to equation 11.19, all that has changed is that where we

previously had (jω/ωc), we now have (ωc/jω). This has the effect of reversing

the frequency response!

So to design a high pass filter, we begin by designing a prototype low pass

filter, then we interchange the inductor and capacitor. We can also use the low

pass prototype to design higher order filters.

11.5 Higher Order Filters

A second order filter will have a roll off slope of -12dB/oct. This is because of the

ω2 term in its transfer function. Often we will want to roll off the contribution

of each loudspeaker more rapidly. To do so we need to increase the order of the

filter used.

The order of a filter’s transfer function is directly related to the number of

reactive components in the filter. We can see this by considering our second

order high pass (figure 11.6).

The transfer function of our 2nd order high pass is given by,

Vout
Vin

=
1

1
jωCZLS

+ 1
(jω)2CL + 1

. (11.22)

Below the cut off frequency (ωc = 1/LC) the magnitude of this transfer function

increase at a rate of 12dB/oct, due to the 1/ω2 term in its denominator. Now

suppose we increase the impedance of the parallel inductor such that it tends to

infinity L→∞, i.e. no current can pass through this element. This is equivalent

to removing the inductor from the circuit all together. As the inductance L tends

toward infinity the term 1/(jω)2CL tends towards zero. Now the only frequency

dependence left is that of the 1/ω. This corresponds to a 6dB/oct rise below

the cut off frequency. Hence the roll of rate is related to the number of reactive

elements in the circuit.

There are several different ways or creating higher order circuits by introducing

additional reactive components. A particularly simple approach is to use a ladder

structure (or a Cauer topology). The idea it to chain together several low order

filters, passing the output of one, into the input of another. Lets look at an

example using our low pass prototype.
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Shown in figure 11.7 is a 6th order low pass filter. Three second order low

pass prototype filters have been cascaded, with the input of one set to the output

of the previous. Each additional low pass prototype introduces two additional

reactive components, and so increases the filter order by 2.

VS

i L L L

CCC ZLS

Figure 11.7: Second order high pass filter with
loudspeaker loading.

Now lets work through the analysis of this circuit and derive the equations for

each capacitor and inductor...

Only joking! That would be horrible. We don’t want to have to analyse by

hand large filters like that. Instead we can use filter design tables! This is way

more practical.

Shown in figure 11.8 are a pair of stacked low pass filters. They differ in that

the top circuit begins with a shunt capacitor, whilst the bottom circuit begins with

a series inductor. They are however, both low pass filters. We are interested in

determining the capacitor and inductor values necessary to obtain a Butterworth

filter alignment with a cut off frequency of ωc. Rather than deriving by hand all

the equations and solving these by hand, we can use tables of normalised filter

coefficients, as in figure 11.1. Here, for a given order of filter (1 to 10 are shown)

the table values dictate the component values, depending on whether the shunt

capacitor or series inductor circuit is used.

RS= 0 L′1 L′3 L′5

C ′4C ′2 RLS

RS= 0 L′2 L′4

C ′5C ′3C ′1 RLS

Figure 11.8: Stacked low pass filter topologies
for normalised coefficients in table 11.1.

Lets look at an example. We have already gone through the analysis of the

2nd order low pass filter starting with a series inductor. We derived the values of

L and C as,

L =

√
2RLS
ωc

(11.23)

C =
1√

2RLSωc
. (11.24)
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Notice that the factors of
√

2 = 1.414 and 1/
√

2 = 0.707 happen to coincide

with the normalised filter coefficients in figure 11.1!

From inspection we can see that these coefficients are normalised in two ways:

1) so that the impedance that the filter expects to see (i.e. of the loudspeaker)

is 1 ohm

2) and so that the cut off of the LP filter is 1 rad/s.

To calculate the necessary component values we need to denormalise these coef-

ficients (i.e. impedance scaling and frequency denormalisation ). The frequency

denormalisation scales the components values to move the cut off frequency up

or down, whilst the impedance scaling makes sure that the circuit expects the

correct loading.

For the impedance scaling we just scale the impedance of each component

by RLS (e.g. 8 ohm). Remeber, the impedance of a capacitor is 1/jωC, so

we divide the capacitance by RLS . For the frequency denormalisation we divide

the reactive components by new cut off frequency. Based on the above, the

components values are given by,

C = Cn ×
1

ωcRLS
(11.25)

and

L = Ln ×
RLS
ωc

(11.26)

where Cn and Ln are the normalised coefficients from figure 11.1 (or equivalent).

These values will give us the low pass filter we want! It is important to note

Order C1 L2 C3 L4 C5 L6 C7 L8 C9 L10

1 1.00000

2 1.41422 0.70711

3 1.50000 1.33333 0.50000

4 1.53074 1.57716 1.08239 0.38268

5 1.54509 1.69443 1.38196 0.89443 0.30902

6 1.55292 1.75931 1.55291 1.20163 0.75787 0.25882

7 1.55765 1.79883 1.65883 1.39717 1.05496 0.65597 0.22521

8 1.56073 1.82464 1.72874 1.52832 1.25882 0.93705 0.57755 0.19509

9 1.56284 1.84241 1.77719 1.62019 1.40373 1.14076 0.84136 0.51555 0.17365

10 1.56435 1.85516 1.81211 1.68689 1.51000 1.29209 1.04062 0.76263 0.46538 0.15643

RS = 0 L′1 C ′2 L′3 C ′4 L′5 C ′6 L′7 C ′8 L′9 C ′10Table 11.1: Table of normalised filter coefficients
for a Butterworth alignment.

that the coefficient given in figure 11.1 are for a Butterworth alignment. Other

tables are available in filter design books for more complex filter types. Also, the

values given assume that the source impedance is 0, RS = 0. This should be

approximately true for a well designed amplifier.

So now, with the help of figure 11.1, our streamlined process for designing a

low pass filter is as follows:

1) Decide on circuit topology (shunt capacitor or series inductor)

2) Decide on filter order

3) Choose filter alignment (and find appropriate coefficient table)
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4) Get normalised capacitor and inductor coefficients

5) Denormalise and rescale coefficients to get component values

Now what about high pass filters? Well, we have already seen that by inter-

changing the capacitor and inductor in a low pass filter, we obtain an equivalent

high pass filter with the same cut-off frequency. So this is exactly what we do. We

design a low pass filter with the cut off frequency we want, find the component

values, then interchange their positions. Job done.

So far we have been considering the low pass and high pass filters of our cross-

over independently. Whilst this is perfectly okay to do (providing the amplifier

impedance is sufficiently small!), we mustn’t forget what we are trying to achieve

with our cross-over. We are trying to design a pair of filters which allow us to

smoothly transition between two drivers. To achieve a smooth transition between

any pair of drivers the combined output of our cross-over must provide a uniform

response, even in the absence of any drivers. I.e. we need to check that when

the outputs of our two filters (low pass and high pass) are combined, they yield

a uniform response. This will be the focus of the next chapter.
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To achieve a smooth transition between a pair of drivers it is necessary that, when

combined, the outputs of our cross-over provide a uniform response.

At sufficiently low and high frequencies, i.e. when the two filters are well into in

their pass and stop bands, the signal sent to one driver will be heavily attenuated,

whilst the other is unattenuated. The total acoustic response is then just that of

the unattenuated driver.

Things are less obvious in the vicinity of the cross-over frequency (i.e. the

cut-off frequency of the two filters). In this region the two signals are of similar

amplitude, and so both drivers contribute to the total acoustic response.

To achieve a flat frequency response over this cross-over region we need the

low and high pass filters to combine appropriately. Whilst in reality it is the

combined acoustic response of the two drivers that we want to be flat, we can

safely assume that these drivers are operating in their reference regions, and so

their input signals are transduced ’perfectly’.

The combined voltage output of the cross-over is given by,

vtot = Hlpvin +Hhpvin = (Hlp +Hhp) vin = Htotvin (12.1)

where Hlp and Hhp are, respectively, the low and high pass filter transfer func-

tions, and the combined transfer function Htot is given by,

Htot = Hlp +Hhp. (12.2)

In what follows we will look at what happens when we combine the outputs of

different order Butterworth filters.

12.1 Butterworth Transfer Functions

Recall that the Butterworth alignment is characterised by the magnitude squared

transfer function,

|H(jω)|2 =
1

1 +
(
ω
ωc

)2n (12.3)

where n is the filter order and ωc is the cut-off (-3dB) frequency. It is easy to see

that at the cut off frequency, ω = ωc, i.e. when ω/ωc = 1 the power is equal to

1/2 (i.e. the magnitude is -3dB or 0.707). This is true of any order! Shown in

figure 12.1 are the Butterworth magnitudes for various orders. Figure 12.1 looks

quite promising for a cross-over filter. The high pass version will be identical just

flipped horizontally around cut-off frequency. It looks like if we add the output of

the low pass and high pass we might get something that looks pretty flat? This

is what we want! So fingers crossed. . .
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Figure 12.1: Butterworth transfer functions of
increasing order.

What are we missing though? Phase! Figure 12.1 only shows the transfer

function magnitude. Phase is essential when looking at the summation of any

complex responses. So how do we get the complex transfer function H of the

Butterworth filter from its magnitude squared transfer function |H|2? That re-

quires a trip to the Laplace domain. To avoid this interesting, but long winded

expedition I will just give you the complex transfer functions.

Here are the transfer functions for the first three orders of low and high pass

Butterworth filters. For higher order filters the denominator polynomials can get

a little complicated! You can find general expressions for them online if you are

curious. Notice that in converting from low pass to high pass all we have to do

Order Low Pass High Pass

1 1

1+( jωωc )
1

1+(ωcjω )

2 1

1+
√

2( jωωc )+( jωωc )
2

1

1+
√

2( ωc
jωc

)+(ωcjω )
2

3 1

(1+( jωωc ))
(

1+( jωωc )+( jωωc )
2
) 1

(1+(ωcjω ))
(
(ωcjω )+(ωcjω )

2
)

Table 12.1: Complex transfer functions of low
and high pass Butterworth filters of order 1, 2
and 3.

is replace jω/ωc with ωc/jω.

If you take the magnitude square of any of these transfer functions you will

end up with the Butterworth equation in the top right. Going the other way,

from the magnitude squared function to the transfer function is quite involved,

and luckily, we don’t need to do it!

Now that we have the complex transfer function for orders 1, 2 and 3, lets look

at what happens when we add the complex outputs of two Butterworth filters,

starting with the first order...

12.2 First Order Butterworth Summation <

=

−1 − 1
2

1
2

1

−j

− j
2

j
2

j

Figure 12.2: Low pass (blue), high pass (red),
and combined (green) Butterworth responses in
complex plane.

The easiest way to look at the summed response of two filters is to consider them

as vectors in the complex plane. So lets draw them as such. We have our complex

transfer functions,

Hlp =
1

1 +
(
jω
ωc

) (12.4)

and

Hhp =
1

1− j
(
ωc
ω

) . (12.5)
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To plot these in the complex plane we need to rearrange them to separate real

and imaginary parts. Lets also evaluate them at the cross-over frequency ω = ωc.

1

1 +
(
jω
ωc

) ω=ωc−−−→ 1

1 + j
=

1

1 + j

(
1− j
1− j

)
=

1

2
− j

2
(12.6)

1

1− j
(
ωc
ω

) ω=ωc−−−→ 1

1− j
=

1

1− j

(
1 + j

1 + j

)
=

1

2
+
j

2
(12.7)

Figure 12.3: Low pass (blue), high pass (red),
and combined (black) 1st order Butterworth
magnitude response.

Figure 12.4: Low pass (blue) and high pass (red)
1st order Butterworth phase response.

The total combined response is then given by,

Htot =

(
1

2
− j

2

)(
1

2
+
j

2

)
= 1. (12.8)

Visually we can interpret the above as the summation of two vectors in the

complex plane, as in figure 12.2. Since the imaginary parts are equal and opposite,

they cancel when added, and we are left with a real value of magnitude 1. Also

note that the two filter responses are out of phase by 90◦.

So at the crossover frequency the two filters combine such their total gain is

1, or 0dB. What about rest of the frequencies? Shown in figures 12.3 and 12.4

are the filter’s magnitude and phase responses across the entire frequency range.

Also shown is the combined response (in black).

It is clear that the summed response is equal to 1 across the entire frequency

range; we have a nice flat response! This is exactly what we would want from a

cross-over filter.

Note however that the phase response of the two filters differ by 90◦ at all

frequencies. This phase offset might cause us some problems... Remember that

these filter responses correspond to those of a woofer and tweeter. These drivers

will not be located in the same position, there will be some spacing between them.

This means that there will be a path length difference between each of them and

a receiver position. This will change with angle. At some angle, the phase shift

caused by the path length difference will equal that of the filters phase offset.

This will lead to constructive interference and the introduction of a peak in the

amplitude! We will look at this a little more later on. For now, lets continue with

out summed Butterworth responses.

12.3 Second Order Butterworth Summation

Now lets consider the summation of two second order Butterworth filters with the

complex transfer functions,

Hlp =
1

1 +
√

2
(
jω
ωc

)
+
(
jω
ωc

)2 (12.9)

and

Hhp =
1

1 +
√

2j
(
ωc
ω

)
+
(
ωc
jω

)2 . (12.10)
<

=

−1 − 1
2

1
2

1

−j

− j
2

j
2

j

Figure 12.5: Low pass (blue), high pass (red),
and combined (green) 2nd order Butterworth re-
sponses in complex plane.

<

=

−1 − 1
2

1
2

1

−j

− j
2

j
2

j

Figure 12.6: Inverted low pass (blue), high pass
(red), and combined (green) 2nd order Butter-
worth responses in complex plane.

Evaluating the above at ω = ωc and separating the real and imaginary parts

yields,

1

1 +
√

2
(
jω
ωc

)
+
(
jω
ωc

)2

ω=ωc−−−→ 1

1 + j
√

2− 1
= − j√

2
(12.11)
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and
1

1 +
√

2
(
jω
ωc

)
+
(
jω
ωc

)2

ω=ωc−−−→ 1

1− j
√

2− 1
=

j√
2
. (12.12)

Notice that the transfer function outputs are purely imaginary, both with equal

amplitude and opposite direction. I.e. they are out of phase. So what happens

when we sum these responses? We get complete cancellation,

|Htot| =
∣∣∣∣− j√

2
+

j√
2

∣∣∣∣ = 0. (12.13)

The response is 0! I.e. the gain is 0 or -∞ dB. This is shown visually in figure

12.5, where the filter outputs are again plotted as vectors in the complex plane.

So 2nd order Butterworths aren’t looking like a very good choice for a cross-

over... But remember, the filters are used to drive loudspeakers and really it is

the output of the loudspeaker that we are interested in. We could easily invert

the wiring of one of the loudspeakers to flip the phase. This would give us two

transfer function of equal magnitude AND direction, as in figure 12.6. I.e. they

are in phase.

Now what is the total response? Well its,

|Htot| =
∣∣∣∣ j√2

+
j√
2

∣∣∣∣ =
2√
2

= 1.414. (12.14)

So now we have a gain greater than 1. In dB we have 20log10(1.414) = 3 dB.

So at the cut off frequency, the combined response gets a 3dB boost! The full

frequency response for the two cases above are shown in figure 12.7. On the left

is the original filter summation (no phase inversion), and on the right we have

the phase inverted response.

It is clear that for the original response the 180◦ phase difference leads to a

massive cancellation at the crossover frequency. This is clearly not what we want

from a crossover filter!

Figure 12.7: Low pass (blue), high pass (red),
and combined (black) 2nd order Butterworth
magnitude and phase responses.
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On the other side we have the phase inverted response. Here the in-phase

nature of the two responses mean that at the crossover frequency we get con-

structive interference, and 3dB boost. Again, this isn’t really what we wanted.

BUT the two filters are now in phase, which we like.

<

=

−1 − 1
2

1
2

1

−j

− j
2

j
2

j

Figure 12.8: Low pass (blue), high pass (red),
and combined (green) 3rd order Butterworth re-
sponses in complex plane.

Notice that in either case, the roll off rate of the filters are much greater than

the previous first order case, as expected.

Now lets cross our fingers and hope that the 3rd order filter gives us what we

want (flat magnitude response and in phase!).

12.4 Third Order Butterworth Summation

Now lets consider the summation of two third order Butterworth filters with the

complex transfer functions,

Hlp =
1(

1 +
(
jω
ωc

))((
jω
ωc

)
+
(
jω
ωc

)2
) (12.15)

and

Hhp =
1(

1 +
(
ωc
jω

))((
ωc
jω

)
+
(
ωc
jω

)2
) . (12.16)

Evaluating the above at ω = ωc and seperting the real and imaginary parts

yields,

1(
1 +

(
jω
ωc

))((
jω
ωc

)
+
(
jω
ωc

)2
) ω=ωc−−−→ 1

(1 + j)(1 + j − 1)
=

1

(1 + j)j
=

1

j − 1
= −1

2
− j

2

(12.17)

and

1(
1 +

(
ωc
jω

))((
ωc
jω

)
+
(
ωc
jω

)2
) ω=ωc−−−→ 1

(1− j)(1− j − 1)
=

1

−(1− j)j
=

1

−(1 + j)
= −1

2
+
j

2
.

(12.18)

Notice that like the first order summation, the transfer function outputs have

equal real parts, and opposite imaginary parts. Like the first order summation

their sum yields a magnitude of 1,

|Htot| =
∣∣∣∣(−1

2
− j

2

)
+

(
−1

2
+
j

2

)∣∣∣∣ = 1. (12.19)

This can be seen visually in figure 12.8.

Figure 12.9: Low pass (blue), high pass (red),
and combined (black) 3rd order Butterworth
magnitude response.

The full magnitude and phase response are shown in figures 12.9 and 12.10.

As we might expect, the two filters combine excellently to give a constant mag-

nitude response (notice the steeper roll off than before). But just like the first

order summation, there is a constant 90◦ phase shift across the entire response.

As before, this will lead to constructive (also destructive) interference at some

particular angle where the additional path length due to the non-collocated drivers

coincides with the filter phase offset.

Figure 12.10: Low pass (blue) and high pass
(red) 3rd order Butterworth phase response.

So it appears we have come full circle. What do you expect would happen if

we went up to fourth order? We would get something that looks a lot like a 2nd

order summation! Basically, every time we increase the filter order, we introduce

a factor of j/2 which has the effect of rotating the complex transfer function by

45◦ in the complex plane.

Now lets look a little more closely at this phase off-set issue.
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12.5 Implications - Butter‘worth-less’?

Figure 12.11: Morpheus not caring about a 90◦

phase lag.

From the above we can conclude that:

1) Odd order filters give us a great magnitude response, but we get a 90◦ phase

shift between the high pass and low pass.

2) Even order filters give us a great phase response, but we either get a huge

cancellation or a 3dB boost at the cut off frequency.

So what’s the issue with this 90◦ phase lag?

If we looked only at the magnitude response, we might be tempted to say that

all we need is an odd ordered Butterworth filter and everything will be fine right?

Well, the magnitude only tells us half the story. We have to consider the phase

response also.

Tweeter

Woofer

Crossover

∆d

θ

Figure 12.12: Path length difference between
woofer and tweeter in a loudspeaker system.

In a typical loudspeaker system the woofer and tweeter are not coincident.

This means that for any off-axis listener position their exists a path length dif-

ference between the two. This path length difference will vary with the vertical

angle considered, and will introduce a phase different between the two driver

contributions.

At some particular angle, the phase shift introduced by the path length differ-

ence will equal the 90◦ phase shift between the two filters (remember, odd order

Butterworths have a 90◦ phase offset). Note however, that there will clearly be

two of these angles! One above, and one below. In one, the woofer leads and

the tweeter lags, and in the other the tweeter leads and the woofer lags. At these

two angles the additional path length will either counteract or further shift the

filters phase response, leading to either constructive and destructive interference.

What about the response on axis? Well on axis there is no additional phase

shift, and so we get a gain of exactly 1. Lets look at an example.
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If we take two 3rd order Butterworth filters with a cross-over frequency of 1.7

kHz and two drivers spaced apart by 17 cm we will see the following directivity

in figure 12.13.

Here we have chosen to Ignores the directivity of each individual driver, and

treat them as omnidirectional.

Because the two drivers are 90 degrees out of phase (due to the filter phase

offset) on axis we have our desired 0dB response. At an angle of 15◦ however,

the path length difference introduces an addition phase shift which causes the

two drivers to become out of phase. This leads to destructive interference and a

massive cancellation. This is the called the cancelation axis.

Figure 12.13: Vertical directivity due to non-
collocated drivers

Figure 12.14: On-axis, peaking axis, and can-
cellation axis frequency response due to non-
collocated drivers.

At −15◦ we get the same path length difference, this time however the driver

positions have been interchanged! As such the additional phase shift causes the

two drivers to become in phase. This leads to constructive interference and a

3dB boost. This is called the oeaking axis.

The magnitude frequency response of the two drivers together are shown in

figure 12.14 for the on-axis, cancellation axis, and peaking axis directions.

It is important to note that the cancellation nodes are not due to the cross-

over design, they are due to the vertically displaced drivers (the cross-over design

controls where cancellation nodes occur, not that they occur). The greater the

distance between two drivers, the more nodes we get. Actually, odd and even

filters are very similar, the just change the direction of the main lobe. For an

even order filter we would have the lobe facing straight on, as opposed to −15◦.

So why do we care? Well the issue is made clearer by considering a speaker’s

directivity over an audience.

If we use an odd order Butterworth filter as we have suggested (gives us the flat

crossover response, when time comes for the 1.7 kHz flute solo the everyone has

been waiting for, the on-axis response sounds great, but due to the peaking axis

lobe anybody at −15◦ get flute blasted! Meanwhile, at the top and bottom the

audience don’t get to hear the solo at all (can you imagine the disappointment!).

Figure 12.15: Speaker directivity over an audi-
ence.

Here is the problem. The Butterworth filter is not ideal as all orders have this

problem, all that changes is the location of nulls and peaks. So what do we want

instead? Well, for a start the main lobe should point directly forwards so that

cancellation nulls are rotated away from the listeners (i.e. the drivers should be

in phase). Also, the main lobe should not peak at +3dB (i.e. the filters gain

should be 1).

How do we achieve this? Somehow we need to design a cross-over filter that
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gives us a gain of 1 whilst at the same time leaving both drivers in phase! This

will be the topic of the next section.



13 Linkwitz-Riley Filters

The issue we are trying to solve is the lobing effect. Lets think back to the 2nd

order Butterworth filter’s response. We had a 180◦ phase offset (see figure 12.5),

but if we invert one of the drivers, they become in phase (see figure 12.6), in turn

giving us a 3 dB boost. What if we could ensure that the drivers were in phase

(so as to avoid the off-axis lobing), but control their gain so that when combined

we get 0 dB, not 3 dB?

<

=

−1 − 1
2

1
2

1

−j

− j
2

j
2

j

Figure 13.1: Low pass (blue), high pass (red),
and combined (green) 2nd order responses of
ideal filter in complex plane.

How would we do this? Rather than ensuring that the power at the cross-over

was 1/2 (so that amplitude was 1/
√

2 = 0.707), we should make it that the

amplitude is 1/2! We could do this by ensuring the power is 1/4 rather than a

1/2 (since 1/
√

4 = 1/2). This is equivalent to crossing over the filters at -6 dB,

rather the -3 dB.

We can interpret this visually using figure 13.1. Previously in figure 12.6 we

had the high pass and low pass transfer functions both equalling ±j/
√

2 at the

cross-over frequency. Instead, in figure 13.1 we have them equalling ±j/2. Their

summation then yields a magnitude of 1.

Here is an example of what we are hoping to achieve. By crossing the filters

over at their -6 dB point the resulting level would be 1, and the drivers would

remain in phase.

This would give us a main lobe at 0 degrees, as the drivers are in phase, and the

magnitude of the peak would be 0dB. This is the idea behind the Linkwitz-Riley

filter design.

Figure 13.2: Filter cross-over at -3db vs.-6dB.

There are two ways of thinking of the Linkwitz-Riley filter:

1) One is as a new type of filter alignment. This time, we want amplitude, not

power, to be 1/2. We are also specifying a particular phase relationship, either
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±90◦, (we can always invert one driver). We will look at this in a bit more

detail shortly, but the idea is that we want the transfer function to be equal

to ±j/2 at ωc. The task is then to find which component values L and C

produces this.

2) The other way to think about it is to think of the Linkwitz-Riley filter as two

Butterworth filters cascaded together. This was the original idea in the 70s.

We will look at this a little later. For now lets go through an example.

Lets start with the transfer function we derived for our low pass 2nd order

filter,

H(jω) =
1

jωL
ZLS

+ (jω)2LC + 1
=

1

(1− ω2LC) + jωL
ZLS

(13.1)

We are interested in the alignment where at ωc we have,

H(jωc) = ± j
2
. (13.2)

This requires a 90◦ phase shift, i.e. the real part of the transfer function should

be zero. This gives an equation we can use to solve for ωc in terms of L and C,

1− ω2
cLC = 0→ ω2

c =
1

LC
. (13.3)

Next we have an equation for its magnitude, which we set to 1/2,

|H(jωc)| =
1

2
=

1
jωL
ZLS

. (13.4)

This gives us a second equation.

Now we have a pair of simultaneous equations we can use to solve for L and

C. From equation 13.4 we have that,

L =
2ZLS
ωc

. (13.5)

and from equations 13.3 and 13.5 we have that,

1 = ω2
cCL→ C =

1

2ZLSωc
(13.6)

Do these equations look familiar? Well they are quite similar to what we derived

for the normal Butterworth alignment, except we have coefficients 2 and 1/2

rather than
√

2 and 1/
√

2.

Substituting these values into the low pass filter transfer function we get the

following equation,

H(jω) =
1

jωL
ZLS

+ (jω)2LC + 1
→ 1

1 + 2
(
jω
ωc

)
+
(
jω
ωc

)2 . (13.7)

Again, this is very similar to the transfer function of the Butterworth alignment

(see equation 11.19), except we have a factor of 2 in the denominator, not
√

2.

Similarly for a high pass Linkwitz-Riley filter we have,

H(jω) =
1

1
jωCZLS

+ 1
(jω)2CL + 1

→ 1

1 + 2
(
ωc
jω

)
+
(
ωc
jω

)2 . (13.8)

Shown in figure 13.3 are the magnitude and phase responses of the low and high

pass Linkwitz-Riley filters described above. Also shown is the combined response.
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As expected we can see that the two filters cross-over at an amplitude of 1/2.

Also, their combined response is uniform across the entire frequency range, and

they are in phase! This is exactly what we wanted.

By having the two filters/drivers in phase the main directivity lobe (i.e. the

peaking axis) is directed straight forward. With the two drivers now having a gain

of 1/2 at the cross-over frequency, their combined response gives total gain of 1.

Figure 13.3: Magnitude and phase response of a
low pass and high pass Linkwitz-Riley filters and
their combined response.

In the above we consider the Linkwitz-Riley filter as a new type of alignment,

and derived the L and C values to achieve it. The other way to think of a Linkwitz-

Riley filter is as two Butterworth filters cascaded together. This was the original

idea in the 70s. Shown in figure 13.4 in pink is a 2nd order filter Butterworth

(-3dB cut off -12dB / oct roll off), in green is a third order Butterworth (-3dB cut

off -18dB/oct roll off) and in blue is a 4th order Linkwitz-Riley filter (two cascaded

2nd order filter Butterworth). If we cascade two of the 2nd order Butterworths

we can see how the gain at ωc moves from -3dB to -6dB, and the rate goes from

-12 to -24 dB/oct. You can also imagine how the phase changes. Even order

Butterworths are always either in phase or 180 degree out of phase. Odd order

Butterworths have ±90◦ difference. If we cascade two of these they become in

phase or 180◦ out of phase. Therefore cascading two will always yield the same

result (in phase or 180 degree out).

So what’s the catch? Well not much actually! We can summaries its properties

as follows:

1) Always even order (made up of 2 Butterworth filters cascaded)

2) They produce a flat frequency response on axis

3) The main lobe is at zero degrees and is 0dB not +3dB
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Figure 13.4: Linkwitz-Riley filter as a cascaded
Butterworth filter

So what’s not to like? Actually not much. Linkwitz-Riley’s are probably the

industry standard. In particular, 4th order systems seem to be very popular, but

also 2nd order.

The main issue with using a Butterworth filter (or cascading them) is that a

Butterworth filter has non-linear phase response. What does this mean? Just

that the phase changes non-linearly with frequency.

Often in filter design it is interesting to look at the so called group delay. The

group delay is the derivative of phase response with respect to frequency. It tells

us the delay, in seconds, of different frequencies passing through the filter. With

a linear phase response, the gradient is constant, thus all frequencies are delayed

the same! So a non-linear phase response means that the group delay is not

constant with frequency, i.e. some frequencies pass through quicker than others.

Figure 13.5: Step response of a Linkwitz-Riley
filter.

This non-linear phase behaviour can also be seen in the filter’s step response

in figure 13.5. We can see a slight overshoot when responding to a step response,

which takes some time to damp down. Is this sort of artefact audible though?

In studies it has been shown that under laboratory conditions you can detect the

difference on non-musical tones, but in practical audio systems not so much, since

the response in the order of 1 or 2 ms.



14 Impedance Compensation

Up until now we have assumed that our loudspeaker impedance is constant and

purely resistive, ZLS = RLS = RE , where RE is the drivers nominal DC resis-

tance, despite knowing full well that it is far from constant. We saw earlier (see

equation 8.29 and figure 8.11) that the electrical impedance of a loudspeaker

driver is complex and frequency dependent. This means that our cross-over filter

is ‘looking into’ a completely different circuit. This will change its properties, see

for example figure 11.4.

It turns out that we can improve the performance of a cross-over by compen-

sating for the loudspeaker’s complex impedance, i.e. we can trick the cross-over

into thinking that there is only a nominal resistance on its output. This is what

we call impedance compensation. We saw a little while back that the cross-over

response with the true and nominal loudspeaker impedance (see figure 11.4). We

handwavingly described it as not too bad. But it is not perfect, and if we account

for it we will get a better cross-over response. This is the sort of thing higher end

systems will do.

Figure 14.1: Electrical impedance of a moving
coil loudspeaker in an infinite baffle.

The electrical impedance of a loudspeaker is made up of two key features. A

low frequency peak due to the mechanical resonance of the driver (mass on a

spring), followed by a gradual rise with high frequencies due to the inductance of

the voice coil. These are the features we want to compensate for.

The trick is to add an extra impedance element into the filter network which

when combined with the loudspeaker impedance, provides exactly the nominal DC

resistance that the crossover was designed to work with. Adding the compensation

impedance cancels out all the messy stuff that the loudspeaker creates.

Zcomp ZLSRE

Figure 14.2: Impedance compensation circuit

Using the product over sum rule from figure 14.2 we have that,

RE =
ZcompZLS
Zcomp + ZLS

→ Zcomp =
ZLSRLS
ZLS −RE

, (14.1)

where Zcomp is the compensation impedance necessary to get a nominal resistance

RE across the terminals to the driver.

All we need is RLS and ZLS . We know RE , its just the nominal DC resistance

of the loudspeaker. What about ZLS? Well we have already developed an

equivalent circuit model for exactly this!
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Shown in figure 14.3 is the equivalent circuit for a loudspeaker driver with all

mechanical components referred to the electrical domain, excluding any acoustic

loading.

V

i

RE LE

(BL)2

RM
MM

(BL)2 (BL)2CM

Figure 14.3: Equivalent circuit with all elements
referred to the electrical domain.

Now all we need to do is work out the impedance of this circuit and stick

it into the equation we formulated for Zcomp. However, it is easier to split the

circuit into low and high frequency parts, where the low frequency part captures

the resonance of the driver, and the high frequency part captures the increased

impedance due to the voice coil inductance. Then we can compensate each driver

separately, i.e. tweeter compensation for resonance and woofer compensation for

coil inductance.

Here are the high and low frequency parts of the circuit. It has been split such

that the low frequency part ignores the inductance, and the high frequency part

ignores the mechanical resonance.

RE

(BL)2

RM
MM

(BL)2 (BL)2CMZ
(low)
LS

RE LE

Z
(high)
LS

Figure 14.4: Low frequency (left) and high fre-
quency (right) equivalent circuits for a loud-
speaker driver in the electrical domain.It is helpful to think of ZLS as,

ZLS = RE + Z ′ (14.2)

where Z ′ is some arbitrary impedance. This makes the maths easier! After

substituting equation 14.2 into equation 14.1, we can rearrange as follows,

Zcomp =
ZLSRE
ZLS −RE

=
(RE + Z ′)RE

(RE + Z ′)−RE
=
R2
E + Z ′RE
Z ′

= RE +
R2
E

Z ′
(14.3)

Now we have a new expression for Zcomp lets derive the high and low frequency

compensation impedances.

14.0.1 High Frequency Compensation

It is straightforward from observation to see that Z ′ is simply the voice coil

inductance.

ZLS = RE + Z ′ = RE + jωLE (14.4)
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Substituting this into ZLS and this into Zcomp we arrive at the compensation

impedance required for the voice coil inductance.

Zcomp = RE +
R2
E

Z ′
= RE +

R2
E

jωLE
(14.5)

It is simply a series resistor and capacitor in parallel with the loudspeaker driver.

The value of the capacitor is the voice coil inductance, divided by the DC resis-

tance squared.

RE

LE
(RE)2

ZLSRE

Figure 14.5: High frequency impedance compen-
sation circuit

14.0.2 Low Frequency Compensation

Now for the low frequency compensation. We have our three mechanical elements

in parallel. Using the inverse summation rule for parallel impedances we get the

impedance Z ′,

Z ′ =

(
RM

(Bl)2
+
jωMM

(Bl)2
+

1

(Bl)2jωCM

)−1

(14.6)

From inspection we can see that the 1/Z in the equation for Zcomp is simply the

bracketed term above, i.e. the term being inverted.

Zcomp = RE +
R2
E

Z ′
= RE +R2

E

(
RM

(Bl)2
+
jωMM

(Bl)2
+

1

(Bl)2jωCM

)
(14.7)

The compensation impedance is now a simple sum of terms, i.e. the elements

are in series! (still in parallel with the loudspeaker though). The corresponding

values are shown in figure 14.6.

RE +
RMR

2
E

(BL)2

MMR
2
E

(BL)2

CM (BL)2

R2
E

ZLSRE

Figure 14.6: Low frequency impedance compen-
sation circuit



142 microphone and loudspeaker design

14.0.3 Combined Impedance Compensation

The low and high frequency compensation networks derived above can be com-

bined in parallel to provide broadband compensation for both mechanical and

inductive features. The resulting circuit is shown in figure 14.7.

RE +
RMR

2
E

(BL)2

MMR
2
E

(BL)2

CM (BL)2

R2
E

RE

LE
(RE)2

ZLSRE

Figure 14.7: Combined impedance compensation
circuit

Shown in figure 14.8 is an example of this sort of compensation network in

action. We can see the high frequency compensation works well but it is more

difficult to control the low frequency resonance. Never-the-less it does a good

job reducing its influence.

Figure 14.8: Impedance compensation example.

This sort of compensation will make the cross-over more accurate, and isn’t

very expensive as it just requires a few extra passive components. In practice

however, it is likely sufficient to just compensate bass driver for high frequencies,

and perhaps the tweeter its mechanical resonance only.



Part III

Loudspeaker Arrays



15 Introduction

In the first semester we looked at standard single driver loudspeakers. We used

a rigid piston model to approximate their radiation and we saw that at low fre-

quencies they behave more or less omni directionally. As frequency increases, the

directivity of a rigid piston gets more beam like.

Although this sort of behaviour is typical for standard loudspeakers, often we

want a bit more control over the directivity. This sort of control however, doesn’t

come cheap...

Figure 15.1: BeoLab 5

Shown in figure 15.1 is a B&O speaker, released about 10 years ago, nicknamed

the darlek (BeoLab 5 Active Loudspeakers). This odd looking loudspeaker has

been designed to give a uniform 180 degree dispersion, i.e. an even directivity

at all frequencies. This means it does’t matter where you sit still get the same

sound. The only problem is that it costs about £20,000.

Nowadays, more HiFi loudspeakers are considering the effect of the room,

and their own placement, typically by adding some directivity control. Although

relatively new on the HiFi scene, this sort of control has been an integral part of

PA design for quite some time.

The Beolab 5 was designed to disperse sound evenly. Another, this time even

more expensive (£60,000), B&O loudspeaker (the Beolab 90, see figure 15.2) is

designed to offer a variety of controllable directivity patterns. Sometimes you

don’t want 180◦ dispersion. Music is mixed in a studio, i.e. a space designed so

that reflections are diffuse. This sort of diffuse field will not be achieved in your

home.

Figure 15.2: BeoLab 5

So how do we achieve a more controlled directivity? The trick is to use multiple

loudspeaker drivers. This will allow us to generate directional responses, which

can be controlled, for example using beam steering. This was you can take into

account the room within the design.

15.1 The Line Array

The first directional loudspeaker we will consider is the line array. I’m sure you

will recognise this type of loudspeaker design (see figure 15.3). Its certainly not

something you would have set up in your living room, but it is pretty much the

defacto standard for large area/out door performances, or any other large scale

PA system. We will begin our foray into loudspeaker arrays by looking at how to

model the sound radiation from line array loudspeakers. Hopefully some of the

maths we cover will already be familiar to you from your other modules.

Figure 15.3: Example line array.

Lets start with a bit of historical perspective. The earliest known research

into line array is thought to be the work for Harry F. Olson, a famous American

electrical and acoustical engineer, in 1957. Olson developed the column speaker,
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a series of vertically aligned drivers in a single enclosure. This particular design

achieved a wide horizontal and narrow vertical directivity pattern. It became a

popular choice for speech reinforcement, particularly in reverberant spaces. Its

focussed directivity minimised unnecessary excitation of the reverberant field, thus

improving the direct-to-diffuse ratio desirable for clarity and intelligibility.

It wasn’t really until early 90s that line arrays were revisited and used for full

range PA systems. One key problem was that they only worked over a narrow

frequency band. At high frequencies you can’t locate drivers close enough. This

leads to constructive and destructive interference with multiple hard to control

side-lobes. Although one solution would be to reduce the loudspeaker size to space

them closer together, we need large loudspeakers for low frequency radiation!

In 92, L-acoustics made a break through by developing a waveguide system

which restricted the directivity at HF. The idea was that rather than using con-

structive and destructive interference, horns were use to provide the required

directionality. The L-acoustics V-DOSC system was a game changer in sound

reinforcement. Their success is evident from their 20 year production run, from

1992 until quite recently. In fact they were the main loudspeaker system for the

London 2012 Olympic Stadium.

So back to the problem at hand... How do we model, mathematically, the

sound radiation from a line array? Well first of all, what is a line array? In its

simplest form, it is a number of ideal acoustic sources arranged in a line. It turns

out that a very similar problem was tackled was back in the 17th century!

15.2 Huygen’s Principle

The whole point of any loudspeaker system is to recreate a captured sound field,

as closely and as realistically as possible. It turns out a 17th century chap called

Christian Huygens (see figure 15.4) was well ahead of his time. He argued that

any wave front could be modelled as a series of wavelets, in this case the wavelets

are circular waves, emanating from ideal monopole sources.

Figure 15.4: Christian Huygens, 1629-1695

Simply put, if you place a series of monopoles over a wave front they will

interfere with one another in such a way that they recreate that wave front. This

means that we can recreate a wave front from any location! I.e. we don’t have

to go back and recreate the original source. Figure 15.5 shows the principle being

used to recreate both circular and plane waves.

This is the fundamental principle that underpins the use of line array loud-

speakers (also other more complex loudspeaker systems, for example Wave Field

Synthesis arrangements)

15.3 Vertical and Horizontal Coverage

Before we get into the mathematical modelling, lets consider more generally the

design of line arrays. I’m sure you have noticed that the systems used for sound

reinforcement outdoors and in large venues always end up curved into a ”J” shape.

But why?

Well first of all, we want a line array to prevent spill, i.e. minimise radiation

away from audience (for example to avoid annoying residents nearby a festival).

Second, we want to curve the wave front downwards so that nearby listeners can

hear what’s going on (otherwise we would just project it over the top of them!).
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Primary wave fronts

Secondary wavelets

Figure 15.5: Huygen’s principle used to recreate
circular and plane wave fronts.

Figure 15.6: Vertical coverage from line array

Ideally, we want equal sound intensity over the entire audience. Now remember,

intensity is proportional to 1/r2. So far away we need to have lots of speakers

contributing. These speakers interfere constructively to deliver more intensity at

a distance. This is done by forming a narrow focused beam. To compensate for

being close, less speakers contribute, so we get a wider beam with lower intensity,

as in figure 15.6.

Figure 15.7: Horizontal coverage from two
speakers

Now what about horizontal coverage (figure 15.7)? This is also important. We

want a wide directivity across all frequencies. The loudspeaker cabinets are often

designed to try and achieve this. Shown in figure 15.8 is an example. We have

a narrow aperture for small wavelengths (high frequencies) with cabinet aided

diffraction to give wide dispersion. Often systems will use horn loading to give

even dispersion at multiple frequencies.

Figure 15.8: Horizontal coverage from line array

At low frequencies widely spaced speakers are unavoidable. This leads to

wide dispersion at larger wavelengths. At very low frequencies directivity is more

difficult to control and requires other solutions, which we will cover latex in the

notes.



16 Line Array - Mathematical Model

Okay, lets start building our line array model. To start with let us assume that

our individual acoustic sources can be treated as monopoles (i.e. considering low

frequencies). Our line array can thus be modelled as a series of monopoles in a

row.

So what is a monopole? We covered this earlier when looking at radiation

models for loudspeakers. A monopole is an idealised acoustic source whose ra-

diation is omni-directional. We can think of it as an infinitely small pulsating

sphere.

Suppose we have N monopoles, arranged over a line of length L, spaced d

meters apart from each other (see figure 16.1). Each monopole is driven by

a complex signal An. Also, assume that a listener is positioned at some large

distance r >> L from the array. Recall that each monopole radiates spherical

d

L = (N − 1)d

A0 A1 A2 A3 AN−1

r

Figure 16.1: Line array model

waves, and that at any point in space these waves will add together. It is clear

from figure 16.2 that if the listener is positioned sufficiently far away (i.e. if

r >> L), the summed response of each spherical wave will approximate a plane

wave. This corresponds to the so called ‘far field approximation’. Providing that

our listener is located in the far field we can think of our line array as simply

radiating plane waves. In other words, we can assume that rays from sources

remain parallel to one another. Also note that based on the far field assumption,

the difference in level between each loudspeaker’s contribution may be considered

negligible, since plane waves do not attenuate with distance. Now we can think

about what happens at different angles. As you rotate around in the far field we

still have plane waves. Under the far field assumption all of these parallel rays
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Figure 16.2: Line array model - far field approx-
imation

d

L = (N − 1)d

r

Figure 16.3: Line array model - far field approx-
imation

have the same angle θ to the receiver. Clearly this assumption breaks down as you

get closer to the array, i.e. each angle will be different for a curved wave-front.

If we do a little geometry we can get a bit further. What we want is an

expression for the path length difference between each source and the receiver.

So if the difference between r0 and r1 is ∆r, then clearly the difference between

r0 and r2 is 2∆r and so on. So we want an expression for ∆r in terms of the

angle θ.

Shown in figure 16.5 are two elements of our line array. From inspection we

have,

sin θ =
∆r

d
→ ∆r = d sin θ. (16.1)
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d

L = (N − 1)d

∆r

∆r

θ

rN

rN−1

rN−2

rN−3

r0

Figure 16.4: Line array model - far field rotation

θ

θ

∆r

d

Figure 16.5: Path length difference

Now lets put out line array model together. First recall the equation for

monopole radiation,

p(r, ω) =
A

r
ej(ωt−kr). (16.2)

Now separate the time and space variables in the exponential,

p(r, ω) =
A

r
ejωtejkr (16.3)

Now we can consider the nth monopoles radiation by extending the path length,

p(r, ω)n =
A

r
ejωtejk(r+n∆r). (16.4)

Note that we have assumed that the attenuation due to distance is unchanged

by the additional path length. This is part of our far field assumption. Now

lets regroup the complex exponential and define a new complex amplitude coef-

ficient that contains the coefficient A, the distance attenuation, and the original

time/space dependency,

p(r, ω)n =
A

r
ej(ωt−kr)ejkn∆r = Ane

jkn∆r (16.5)

where An = A
r e

j(ωt−kr) This new exponential term ejkn∆r describes the change

in phase due to the additional path length n∆r.

We now have a expression for the radiation of the nth monopole, lets add

together the contribution of each monopole

p(r, ω)T = A0 +A1e
jk∆r +A2e

jk2∆r + · · ·+AN−1e
jk(N−1)∆r (16.6)

or in summation notation,

pT (r, ω) =

N−1∑
n=0

Ane
jkn∆r (16.7)
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This gives us the total radiation pressure due to our line array. Now let us

substitute in our trigonometric identity for the path length difference, this gives

us the radiated pressure as a function of angle,

pT (θ, ω) =

N−1∑
n=0

Ane
jknd sin θ. (16.8)

Now Lets define a new variable, Ω(θ) = kd sin θ. Remember, k is the wave

length, d is the loudspeaker spacing, and θ is the listener angle. Substitution into

equation 16.8 yields an equation that should look somewhat familiar...

pT (Ω) =

N−1∑
n=0

Ane
jnΩ(θ). (16.9)

It is the same form as the discrete Fourier transform of (A1, A2, · · · , AN )! This

is a really interesting result. We have derived an expression for our line array

radiation that looks just like the Fourier transform of its amplitude coefficients!

Before we take this useful fact any further, lets revisit the Fourier transform.

16.1 Fourier Transform

So what do you remember about the Fourier transform? The Fourier transform

is an integral transformation of the form,

X(ω) =

∫ ∞
−∞

x(t)ejωtdt, (16.10)

where x(t) is an arbitrary time varying signal, and ejωt is a complex exponential

(i.e. a sinusoid of frequency ω with some arbitrary phase). Note that here t is

a continuous variable, i.e. it takes on all real values, hence equation 16.10 is a

continuous Fourier transform.

The discrete Fourier transform looks pretty similar though... We multiply each

value in a discrete array x(n) by a complex exponential, and sum over all values,

X(ω) =

∞∑
−∞

x(n)ejωn. (16.11)

This complex exponential differs from the continuous Fourier Transform in that

the continuous time variable is replaced by the discrete counter n.

So the Fourier transform is an integral transformation that relates two equiv-

alent descriptions of a signal. Take for example the time varying signal x(t) (this

could be for example an acoustic pressure measured by a microphone). This time

domain signal is related by the Fourier transform to its frequency domain repre-

sentation X(ω). In the time domain, the signal is represented by a complex wave

form that varies with time. In the frequency domain the signal is represented by

an infinite summation of simple sine waves, which are periodic in time. These

two descriptions of the signal are entirely analogous. So the time domain and

frequency domain representations of a signal are related by the Fourier transform

(and visa versa by the inverse Fourier transform). What other domains are there?

The time domain is used to describe information that changes with time. But

information can also change with position, for example at any particular instant

an acoustic wave has some spatial variation. So we also have spatial domain. Like
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Figure 16.6: Fourier transforms - time, fre-
quency, space and polar domains.

the time domain, the spatial domain also has a second equivalent representation,

related through the Fourier transform. We call it the polar domain.

So the Fourier transform of a time domain signals gives a frequency domain

response. Similarly, the Fourier transform of a spatial domain signal gives a polar

domain response.

16.1.1 Useful Fourier Properties

So the big advantage of this Fourier based approach to line array directivity is

that it opens up bunch of useful tools based on the properties of the Fourier

transform. Here are some of the use Fourier transform properties that we will be

using later on:

Linearity - Firstly if we add stuff together, in time or spatial domain, or scale it

by a constant factor, it scales by the same amount in the transformed domain.

FFT[ax(t) + by(t)] = aFFT[x(t)] + FFT[y(t)] (16.12)

Shift theorem - In the time domain this is the theory that says if we want to

delay to a signal, in the frequency domain this is equivalent to multiplying by

a complex exponential, where the phase shift applied increases with frequency

(ω0t), i.e. it is a linear phase change.

FFT[x(t− t0)] = e−jωt0FFT[x(t)] (16.13)

Convolution - Multiplication in frequency domain is convolution in the time do-

main, and vice verse.

x(t)⊗ y(t) = FFT[X(ω)× Y (ω)] (16.14)

x(t)× y(t) = FFT[X(ω)⊗ Y (ω)] (16.15)

Keep these properties in mind as we continue talking about our line array

model.
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16.2 Fourier Based Polar Patterns

Now recall our line array model from equation 16.9,

pT (Ω) =

N−1∑
n=0

Ane
jnΩ(θ). (16.16)

Note that this equation bares a considerable resemblance to the discrete Fourier

transform in equation 16.11. Instead of a transformation between the time domain

and the frequency domain, t→ ω, we have a transformation between the spatial

domain and the polar domain n → Ω. Remember, here n corresponds to the

index of our monopole sources. Since these monopoles are evenly spaced along a

line, we can think of n as being equivalent to position, n→ x. Now what about

the summation?

Amplitude

Figure 16.7: Infinite line array

The discrete Fourier transform involves an infinite summation from −∞ to∞,

our line array model however involves a finite summation... No problem. Lets

imagine that our line array does in fact extend from −∞ to ∞, but only the 0 to

N −1 coefficients are non zero! This essentially truncates the infinite summation

to that of our line array model. So we can interpret our line array model as the

discrete Fourier transform of an infinite array of amplitude coefficients An, only

a finite number of which are non zero.

Figure 16.8: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 1 kHz at a dis-
tance of 1m

Figure 16.9: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 1 kHz at a dis-
tance of 10m

This is a big result. It suggests that if we have number of sources sitting

on surface each radiating with a complex amplitude, in the far field the angular

directivity (i.e. the polar response, the radiated pressure with respect to angle) can

be obtained by taking the discrete Fourier transform of the amplitude coefficient

pattern over the line array. This is an amazingly powerful result. It will let us

apply all of the neat tricks that come with Fourier transforms, e.g. convolution,

shift theorem, etc.

What’s more interesting is that the above doesn’t just apply to sound but

also to other wave based phenomena, such as light, e.g. x-rays. When you do

x-ray imaging you observe a far field polar pattern. By finding the inverse Fourier

transform, we are able to determine an array of amplitudes at the source location.

Now back to our line array. Suppose we decide to drive each element of our

line array with the same signal. Consequently, each monopole will have the same

amplitude. If we were to draw the amplitudes they would look like figure 16.7.

Now remember that the polar pattern is related to the amplitude coefficients by

the DFT. So what is the DFT of this rectangular pulse type of signal? It is a sinc

function! So what have we just concluded? By having an array of omnidirectional

sources in a line, we obtain something that is not omnidirectional. It has a polar

pattern, that will look like a sinc function. I.e. it will have one main lobe on axis

and a series of minor lobes at other angles.

Figure 16.10: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 2 kHz at a dis-
tance of 1m

Figure 16.11: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 2 kHz at a dis-
tance of 10m

Lets look at an example. Lets consider an array of 11 monopoles spaced

evenly over 1 meter, radiating at 1kHz. Shown in figure 16.8 and 16.9 are the

radiated pressures, as a function of Ω = kd sin θ, at distances of 1m and 10m,

respectively. Two plots are given in each figure, the exact response and the

far field approximation. The exact response was obtained adding together the

response of each monopole, computing individually their distances (i.e. we do

not assume plane wave propagation). The far field response was obtained using

equation 16.9 by assuming plane wave propagation (i.e. rays from sources remain

parallel). At 1m away from the array, the far field approximation is clearly in



line array - mathematical model 153

poor agreement with the exact solution. Whilst at 10m away we get excellent

agreement. This demonstrates that our simplified (far field) model provides a

reasonable approximation in the far field!

Shown in figure 16.10 and 16.11 are the radiated pressures of the same line

array, instead at a frequency of 2 kHz. As before, in the far field our simplified

model does a really good job at predicting the radiated pressure, compared to the

exact solution. Also, notice that the main beam is now narrower, and we can see

a greater number of minor lobes.

An important point needs to be made here. Although Ω can in theory vary

over an infinite range, according to the geometrical set up of our problem (Ω =

kd sin θ), it can not exceed ±kd, −kd ≤ Ω ≤ kd . This is due to the sin θ

term, which has a maximum/minimum value of ±1 when θ = ±90◦. Clearly,

once we exceed ±90◦ we will start to see a repetition of the directivity pattern

shown in figure 16.8-16.11, i.e. we will begin to circle behind the array. The

region of admissible Ω values is called the ‘visible region’. Its limits are dictated

by ±kd, i.e. the monopole spacing, and the radiating frequency. For the example

line array shown above, at 1 kHz kd = 2π1000 × d/c = 1.8318, and at 2 kHz

kd = 3.6637. These values correspond to the 90◦ limits (sin θ = ±1) in figures

16.9 and 16.11, respectively.

If either the spacing d or frequency ω are increased, the visible region will

expand. Consequently, the main on-axis lobe will become more narrow, and

a greater number of minor lobes will be seen (see for example the difference

between figures 16.9 and 16.11). Does this sort of behaviour remind you of

anything? Rigid piston radiation! Except with the piston radiation we had a

Bessel function directivity. Here we have a sinc function directivity.

16.2.1 Polar Periodicity

Lets look in a bit more detail at this repetition/periodicity of the polar response.

This polar periodicity is not a feature unique to our line array model, instead it is

a property of the discrete Fourier transform, and similar effects appear in host of

other areas (e.g. aliasing in digital to analogue conversion!). To really appreciate

some of the peculiarities of line array directivity, and its discrete Fourier transform

interpretation, it is worth us revisiting Fourier transforms again.

Fourier transforms are a bit of a mine field. There are a few different types.

Lets start by assuming we have a continuous time domain signal x(t), which we

will further assume is infinite in length (see figure 16.12 top).

Figure 16.12: Continuous signal and its Fourier
transform.

In this case we can happily apply the continuous Fourier transform and we will

get an analytical solution, corresponding to the signals spectrum (see figure 16.12

bottom). It is important to remember that when applying the Fourier transform

we integrate from −∞ to∞, and so we get both positive and negative frequencies

(just like we have positive and negative angles when looking at directivity).

Now suppose we discretise the time domain signal by sampling it. What will

happen to its Fourier transform? If we sample a time domain signal we get

periodicities in the frequency domain!

Figure 16.13: Discretised signal and its discrete
Fourier transform.

We can think of the process of sampling as multiplying our continuous signal

with a pulse train whose rate is fs (i.e. the sample rate). According to the con-

volution rule for Fourier transforms, this is equivalent to convolving the frequency

response of the signal, with that of the pulse train. So what is the Fourier trans-
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form of the pulse train? Well its another pulse train, this time centred at integer

multiples of fs.

Convolution of these two frequency domain responses effectively replicates the

signal spectrum around each pulse, at integer multiples of fs. This leads to a

periodicity in the frequency domain (see figure 16.13).

There is one important issue however, and that is if the signal moves faster

than the pulse train. This introduces an ambiguity because we don’t know what

happens between the samples, i.e. has it moved gradually from one sample to

the next? Or made some rapid transition?

Rapid transitions lead to what is known as aliasing. This is where the high

frequency components of the repeated spectrum begin to overlap with the high

frequency components of the initial spectrum. In Digital Signal Processing we

normally apply very high order filters just before the Nyquist frequency (fs/2) so

as to avoid this effect. It is important to understand that the exact same problem

arises in array directivity. What is the consequence? We get multiple main beams

(this is very bad for our directivity)!

Lets look at an example. Shown in figure 16.14 is the radiated pressure from

the say array consider before, this time at a frequency of 4 kHz, corresponding

to kd = 7.3273. The effect of aliasing is quite clear here. We have introduced

two major slide lobes at approx. kd = 6.2. So what causes this aliasing? It starts

Figure 16.14: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 4 kHz at a dis-
tance of 10m

when half the radiating wave length (λ/2) is equal to the monopole spacing (d),

λ/2 = d.

The example array considered has a spacing, d = 0.1m. A half wave length

of λ = 2d = 0.2 = c/f , corresponds to a frequency of f = 1715 Hz. With a

spacing of d = 0.1 we have kd = 3.1416. From figure 16.15 we can see that

it is at this value of Ω = kd sin θ that our directivity begins to repeat. That is

to say, taking θ = ±90 (i.e. considering the off-axis response), after f = 1715

our directivity we begin to repeat itself. This corresponds to the Nyquist limit!

At this frequency each source interferes destructively with the following on (since

they are 180 degrees out of phase), causing a complete cancellation. Since we

have modelled an odd number of monopoles, the final result is the contribution

from just one single monopole (the rest have cancelled each other out). And so

the amplitude is rather small. Had we modelled an even number of monopoles,

the radiated pressure would be 0 at 90 degrees. Lets now consider what happens

when the whole radiating wave length is equal to the monopole spacing, λ = d.

This corresponds to a frequency of f = 3430 Hz and a kd = 6.2832. At this

point that spacing between the monopoles is exactly the same as 1 wave length.

This means that when looking at θ = ±90◦ (or on axis), all of the monopoles

interfere constructively. Note that this occurs at what is equivalent to the ‘sample
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Figure 16.15: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 1.715 kHz at a
distance of 10m

Figure 16.16: Line array (11 monopoles spaced
evenly over 1 meter) radiation at 4 kHz at a dis-
tance of 10m

frequency’.

Now what about the smaller lobes? And all of the anti-lobes? Lets first think

about what has to happen for us to get complete cancellation at 90 degree? We

have already discussed that this would happen with an even number of monopoles

if the spacing was half a wave length, but when else? When the wave length is

equal to the length of the array then each monopole will cancel not with the

following monopole, but a later monopole whose is spaced half a wave length

away plus d. As this happens for each monopole, we get a complete cancellation

at 90 degrees. This is easier to visualise with an even number of sources, as in

figure 16.17. Each monopole is exactly 180◦ out of phase with another, so we

get a complete cancellation at 90 degrees. This is exactly what happens at the

first anti-node.

So at 90◦ we get a 0 response whenever,

λ =
L+ d

n
=
Nd

n
→ k0 =

2π

λ
=

2πn

Nd
→ (kd)0 =

2πn

N
(16.17)

This corresponds to a frequency of,

f =
c

nNd
(16.18)

where n = 1, 2, 3, · · · . For the example array considered above (where N = 11,

d = 0.1) we calculate the first minimum to be at f = 343 Hz, for which kd =

0.628, which is in agreement with figure 16.14.

Figure 16.17: Destructive interference between
10 monopoles of an array.

As you might expect, the same thing happens once we have two wave lengths

across the length of the array! And so on.

Now what about the minor lobes? These are less interesting but we might as

well look at them whilst we are here!
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If we have a full wave length over the line array, then each monopole will be

cancelled by another which is positioned half a wave length away. This causes a

complete destructive interference. Now what if we have slightly more than a full

wave length across the array? Then those monopole which are within the wave

length will cancel with one another, but those outside this wave length wont.

They will interfere constructively.

Figure 16.18: Destructive interference between 7
monopoles of an array.

As the wave length gets longer more of these extra monopoles (which aren’t

cancelled) get introduced, until we reach one and a half wave lengths. Clearly

any further increase and the extra monopoles will begin to interfere destructively

again. This will continue until we have two waves lengths across the array, which

will give us complete cancellation again.

For a minor lobe to occur at ±90◦ we need the the length of the array to equal

n and a half wave lengths, where n is some integer multiple,(
n+

1

2

)
λ = L = (N − 1)d→ λ =

(N − 1)d

n+ 1
2

. (16.19)

This corresponds to a frequency of,

f =
c
(
n+ 1

2

)
(N − 1)d

. (16.20)

For the example array considered above (where N = 11, d = 0.1) we calculate

the first minor lobe to be at f = 514.5 Hz, for which kd = 0.942, which is in

agreement with figure 16.14.

16.2.2 Through the kd sin θ Lens

So far we have been looking at our directivity as a function of this new variable

Ω. But remember, this is not an angle. It is related to the angle through the

sin function, i.e. there is a non-linear mapping between the true angle θ and our

angular variable Ω.

Figure 16.19: Distortion due to stretching.

Recall that for small values, the sin function is quite linear. And so we might

expect that around 0 degrees, the true angular response is quite similar. However,

around the 90 degree region the sin function really stretches the values out.

What does this mean for our directivity? Well, turns out that the secondary

lobes are much wider than the main lobe! See figure 16.20.
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Figure 16.20: Line array directivity in terms of
angle θ and angular variable Ω.



17 Fourier Tricks

Now that we have introduced our mathematical model for a line array in the

far field, and discussed its interpretation as the discrete Fourier transform of an

array’s amplitude coefficients, we can look at some of the benefits that come with

this interpretation.

17.1 Beam Steering

Right, lets think back to our friend Hugen, and his useful principle of wave super

position. He said that we could recreate any wave front by populating it with

a sufficient number of monopoles. In theory we would not be able to tell the

difference between the original and recreated waveform.

Now suppose we want to steer the sound in a particular direction. How might

we do this? Well we could just rotate the array. But think about it, by rotating

the array we are simply adjusting the path lengths over the array, so that some

are more delayed than others. We can use this idea to steer the array directivity

Figure 17.1: Line array beam steering.

electronically! This is what we call beam steering. How do we do it? Simple,

calculate the additional path length for each speaker that is introduced by a

rotation of a given angle. Now apply an electronic phase delay to each speaker

that corresponds to this additional path length! This will steer the direction of

the radiated wave front.

This is a very useful idea, particularly to fine tune beam direction, for example



fourier tricks 159

to compensate for environmental factors, e.g. wind changes the speed of sound

a bit.

So, based on our Fourier description array directivity, how might we think

about implement some beam steering? The shifting theorem!

Remember, the shift theorem tells us that delaying a signal in the time domain

by t0 is the same as multiplication with a complex exponential ejωt0 in the fre-

quency domain. This is the same as adding a linearly increasing phase lag with

frequency.

Now, if we want to shift something in the spatial domain (i.e. rotate beam)

we can use the same idea. We simply multiply the complex amplitudes by a

progressive (linear) phase change. Mathematically,

pT (Ω) =

N−1∑
n=0

Ane
jnΩ(θ)ejn∆Ω =

N−1∑
n=0

Ane
jnΩ(θ)ejnkd sin ∆θ =

N−1∑
n=0

Ane
jnΩ(θ)ejnωτ

(17.1)

where τ = d
c sin θ is the necessary time delay between neighbouring monopoles

to achieve a rotation of angle θ.

Figure 17.2: Line array beam steering.

By doing this the main lobe moves off axis, however the visible region stays

the same. So because of the non-linear scaling of the Ω term, the beam becomes

more smeared at greater angles.

Shown in figure 17.2 are the directivities of the previous line array example for

3 different cases; no beam steering, 30◦, and 60◦.

Beam steering is a really useful feature of line arrays. Often it is advantageous

to direct the radiated sound in a particular direction, e.g. towards and audience.

In outdoor spaces this would reduce the propagation to nearby dwellings, thus

avoiding complaints! In large indoor spaces it can be used to increase the direct

to diffuse ratio (i.e. less of the radiated sound ends up reverberation) thus improve

clarity and intelligibility. What about in the home? Well there are some interesting

applications using sound bar technology.

Figure 17.3: Sound bar loudspeaker.

Using an array of drivers (see for example figure 17.3) is possible to create a

beam of sound, and steer it such that it is reflected of a surface before arriving

at the listener position. To the listener, it will sound as if a virtual speaker were

located at the position of reflection. This idea can be used to create virtual

surround sound systems, ass illustrated in figure 17.4. But how do we create

multiple speakers if we only have one beam?

Figure 17.4: Virtual 5.1 system using beam form-
ing.
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Remember, the Fourier transform satisfies the principle of super position. This

means that we can super impose multiple beams on top of each other. Even

better, we can individually steer each of these beams.

17.2 Source Directivity

So far we have been considering a line array made up of a finite number of simple

monopole sources. Whilst this is a reasonable assumption at low frequencies, in

the mid frequency range its not quite true. We have also seen that as you go up

in frequency, our loudspeaker array gets more and more directional, i.e. the visible

region gets wider. Eventually we run into aliasing problems and major side-lobes

appear. How can we combat this aliasing issue?

We have already seen that the visible region is dictated by the value of kd. So

if we want to make the visible region smaller (i.e. get a broader directionality)

we need to space the sources closer together (make d smaller). The problem is

that in PA systems you need big loudspeakers!

How else can we avoid the issue of aliasing? One way is to use a directional

loudspeaker for each of the array elements, i.e. replace each monopole source with

a source whose directivity is more narrow. To do this we need to acknowledge

that the replacement of a monopole with a more directional source is a form of

spatial filtering, which is equivalent to a spatial convolution of the two sources.

This is quite tricky to visualise, luckily however, we can call on another property of

the Fourier transform, the convolution theorem; i.e. convolution in the spatial

domain is multiplication in polar domain.

So to replace the monopole elements of our line array with more directional

sources, we simply need to multiple the polar response of line array, with the polar

response of the new source element. Lets look at an example.

Suppose we want to replace each of the monopole elements in our previous

array with a short line source, as in figure 17.5. If the length of each line source

is set as the monopole spacing d, the line array should yield the same directivity

as a continuous line source of length L.

The radiated pressure from each line segment if obtained by integrating a

monopole source over line of the appropriate length,

p∆L =

∫ d/2

−d/2

A

r
ej(ωt−kr)dr → p∆L =

A

r

sin
(

1
2kd sin θ

)
1
2kd sin θ

. (17.2)

Similarly, the radiated pressure from the continuous line source of length L is

given by,

pL =

∫ L/2

−L/2

A

r
ej(ωt−kr)dr → pL =

A

r

sin
(

1
2kL sin θ

)
1
2kL sin θ

. (17.3)

Shown in figure 17.6 are the polar responses of the monopole line array and the

line segment source. Notice that for a line source of length d the nulls coincide

exactly with the side lobes of the monopole array. Now, by swapping out the

omni-directional source for a directional line source we are essentially applying a

spatial filter. It is like convolving the spatial response of the short line source

over the monopole array. Admittedly, this is quite difficult to visualise. But

remember, convolution in the spatial domain is the same as multiplication in the

polar domain. So to get the polar response of our line segment array we just
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r

Monopole array

Line segment array

Interchange source type

Continuous line source

(These should be equivalent)

d

Figure 17.5: Replacement of monopole sources
with short line segment sources.

multiply to two polar responses together. What we get is shown in figure 17.7.

Also shown (orange dashed line) is what we would get from a single continuous

line source of length L. Notice that they are exactly the same, as expected.

Also, notice how by using a line segment source we have completely removed

the side lobes (this is equivalent to the filtering process applied in AD conver-

sion!). Clearly using continuous line source is not possible in reality, so to control

directivity we generally use horn loaded loudspeakers.

17.3 Array Shading

We have see that as you go up in frequency the polar response of our line array

gets more narrow, as the visible region gets wider. We have also seen that as

the array gets longer the array also gets more directional (see for example figure

17.8); the first anti-lobe occurs when the radiated wave length is equal to the

array length, so the longer the array the earlier you run into a anti-lobe. More

obviously, an array of length 1 (i.e. a single monopole) is omni-directional. By

adding additional sources the directivity can only get more directional.
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Figure 17.6: Polar response of monopole line ar-
ray and line segment source.

Figure 17.7: Polar response of line segment line
array and continuous line source.

Figure 17.8: Example of beam narrowing due to
increase array length. 1 meter array vs. 2 meter
array.

In an ideal world what we want is equal directivity at all frequencies. How

can we achieve this? At high frequencies we have to rely on horns to control the

loudspeaker’s directivities, and so the beam width. But at moderate frequencies

we can use a technique call array shading.

Array shading is quite a simple idea. At low frequencies we use all of the loud-

speakers in the array. At high frequencies, to compensate for the narrower beam

width, we use less loudspeakers in the array. This has the effect of broadening

the beam width. Lets look at an example.

Figure 17.9: 21 element line array, modelled at
250 Hz and 1kHz

Figure 17.10: Example of beam narrowing due to
increase array length. 1 meter array vs. 2 meter
array.

Shown in figure 17.9 is the polar response of a 21 element line array, modelled

at 250 Hz and 1kHz. Notice that the 1 kHz response is much more narrow than

at 250 Hz. In figure 17.10 we have the polar response of the same array, but for

the 1 kHz response we only include the 5 central array elements. Notice that the

beam width is now approx. the same as at 250 Hz. This is what we call array

shading.

In reality we may want to apply some smooth windowing function (rather than

just on/off) across the array amplitudes to control the beam width more carefully,

e.g. a Hanning window as in figure 17.14.

So what does this look like mathematically? Well, the application of array

shading amounts to applying a window to the amplitudes of a line array. This
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is equivalent to multiplying the spatial monopole array, with a spatial window

function. Now according to the Fourier transform what is this equivalent to? A

convolution in the polar domain!

So multiplication of the array amplitudes by a spatial window, is equivalent

to convolving their respective polar domain responses. To do this we first need

to figure our what their individual polar domain responses are. Shown in figure

17.11 is an example.

Figure 17.11: Example array shading as a con-
volution in the polar domain.

In the top left of figure 17.11 we have our non windowed array of amplitude

coefficients. In the top right we have its corresponding polar domain response.

Looks like a sinc function right? Now bottom left we have our spatial window,

and on the bottom right we have its polar domain response. Looks a little like a

sinc function, but not really.

Now according to the Fourier transform properties, multiplication of the left

hand plots is equivalent to convolving the right hand plots. Shown in figure 17.12

is what happens if we actually apply this window. On the left is the original array

response, and on the right is the response with shading applied. Notice we get

a beam width approx. equal to the window polar response, which is much wider

than the original array response.

Figure 17.12: Result of array shading.

Admittedly, the level of the output has been reduced somewhat, but this can

be compensated for using standard filtering techniques.

Constant amplitude

Figure 17.13: Line array with no array shading.

Windowed amplitude

Figure 17.14: Line array with smooth Hanning
window array shading.

17.3.1 Optimisation

This array shading idea is all well and good, but we just end up adjusting the

beam width at all frequencies, low frequencies included. We want to be able to

apply a different shading at different frequencies.
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One solution is to implement some complicated DSP. This is exactly what the

Intellivox array by duran audio (now JBL) does. The idea is that every driver

has its own signal path, including controllable delay, filtering and amplification.

This means that shading can be made to be frequency dependant! I.e. you can

control the apparent length of the array for each frequency.

So for example you may end up with filters that look flat in the centre of

the array and are low pass at the edges. This would mean that low frequencies

you use the whole of the array, whilst at high frequencies you would use mostly

the centre of the array. The tricky part is figuring out the right filters to use.

Figure 17.15: The Intellivox array by duran audio
(now JBL).

These will change for every space! This is a great example of where numerical

optimisation can help. The basic idea is that you define some figure or merit (or

a cost function). This could be the beam width, or perhaps the ratio of main to

side lobe level, or even STI over the room. Then you adjust the model parameters

(filter response / delays) such that we minimise (or maximise) the figure of merit.

Numerical optimisation is a very very broad topic, and a great many optimi-

sation algorithms exist. Some notable ones are: ‘Genetic Algorithm’, ‘Simulated

Annealing’, ‘Simplex’ and ‘Stochastic hill climbing’.

17.3.1.1 Genetic Algorithm Example

I have put together a little demo of how you might try to implement an op-

timisation algorithm for array updating. You can find the MATLAB script on

blackboard. It uses the Genetic Algorithm. So lets quickly talk about how this

algorithm works.

The genetic algorithm is designed to mimic the way in which positive traits are

based through generations, i.e. natural selection. To start of the process we have

to generate a random population of parameters (e.g. a number of sets of random

filter coefficients). At each step in the optimisation a number of individuals (e.g.

one set of filter coefficients) are selected at random from the current population.

These are so called parents. The parents are used to produce the children for the

next generation. Over successive generations, the population ”evolves” toward

an optimal solution.
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The genetic algorithm uses three main types of rules at each step to create

the next generation from the current population:

1) Selection rules select the individuals, called parents, that contribute to the

population at the next generation. E.g. select a proportion with lowest cost

function (best directivity?)

2) Crossover rules combine two parents to form children for the next generation.

This could be done by averaging the individual parameter values, or perhaps

splicing them.

3) Mutation rules apply random changes to individual parents to form children.

They add some random factor to encourage mutation. Beneficial mutations

are then adopted by the population.

After a certain amount of elapsed time, or generations, the algorithm outputs

the optimal solution. In the context of array optimisation, the following steps are

followed:

1) Simulate array using filters properties determined by a random set of coeffi-

cients.

2) The radiated pressure from the array is calculated in the far field.

3) A figure of merit characterizing the directivity is calculated from the pressure

distribution.

4) The filter properties are altered by changing the coefficients according to a

standard algorithm that searches for a minimum in a variable.

5) Steps (2) to (4) are repeated until minimum in the figure of merit is found.

I urge you to have a play with the example on blackboard.



18 Low Frequency Directivity

Now that we have dealt with mid/high frequency directivity, lets have a think

about low frequency directivity. It turns out we will have to tackle this in a

completely different way. Lets start by looking a dipole configuration of two

loudspeakers.

18.1 Dipole Radiation

At low frequencies we can model a dipole loudspeaker arrangement as two monopoles

radiating out of phase, spaced some distance d apart (see figure 7.3). Physically

we can get a similar configuration by taking a loudspeaker and attaching to its

rear end a duct of length d. Remember, the front and rear of a loudspeaker driver

are always out of phase!

d

+− θ

∆r

− +

Figure 18.1: Dipole loudspeaker arrangement for
low frequency directivity.

Now lets think about far field radiation of this loudspeaker configuration. Like

with out line array, by considering the far field response we can assume plane wave

propagation. This time however, we are going to measure θ slightly differently.

Why? Because the front and rear of our dipole loudspeaker are in line with the

listener position. So really the problem is very similar to what we did previously,

just with a different angle (and just two monopoles).

Now lets derive the radiation from this arrangement, considering low frequency

(kd << 1) first.
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18.1.1 Low Frequency

From the geometrical set up of our problem the additional path length travelled

by the rear radiated sound is given by,

cos θ =
∆r

d
→ ∆r = d cos θ. (18.1)

The radiated pressure due to the front monopole is given by,

pf = A0e
j(ωt−kr) (18.2)

where r is the distance to the listener position. The rear radiated pressure is

similarly given by,

pb = −A0e
j(ωt−k(r+∆r)) = −A0e

j(ωt−k(r+d cos θ)). (18.3)

The rear pressure can be expressed in term of the front radiated pressure by

separating the complex exponential,

pb = −A0e
j(ωt−kr)e−jkd cos θ = −pfe−jkd cos θ. (18.4)

The total radiated pressure is then given by,

pT = pf + pb = pf
(
1− e−jkd cos θ

)
. (18.5)

Now lets use Euler’s formula to express the complex exponential,

pT = pf (1− [cos (kd cos θ)− j sin (kd cos θ)]) . (18.6)

Now since we are considering low frequencies we can assume that kd << 1.

Taking first order approximations for the trig terms (sinx ≈ x and cosx ≈ 1)

leads to,

pT = pf (1− [1− jkd cos θ]) (18.7)

which simplifies to,

pT = pf jkd cos θ. (18.8)

Equation 18.8 represents the total radiated sound pressure level from our dipole

source. It is made up of two terms. First we have the total radiated pressure of

a monopole, pf , multiplied by a frequency dependent term jkd. Second we have

an angular dependence in the form of cos θ.

Figure 18.2: Frequency and angular dependence
of total pressure/pressure gradient.

So what’s interesting about this? By introducing a second (out of phase)

monopole we have introduce a linear dependence on frequency! Now if we were to

double the frequency, we would get double the radiated pressure. This corresponds

to a +6 dB per octave increase. This is kind of bad news for the low frequencies...

When f is very small, we get very little radiated pressure. Now very good for

a sub woofer! That said, we can always EQ out this frequency dependence, by

applying a low frequency boost at −6 dB per octave.

So looking at the radiated pressure we have two important terms. One de-

scribes the efficiency of radiation (frequency dependant part), and the other de-

scribes the directivity of radiation (angle dependent part). These are shown in

figure 18.2. The directivity is determined by the cos term. This gives us what

is called a figure of 8 polar pattern, i.e. large response on axis, but nothing at

±90◦.
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The main thing to acknowledge is that with a dipole source, there is a lot

of cancellation going on. Most of it is at ±90◦. Towards the front and rear the

spacing between the two sources introduces an extra phase which lets some sound

‘escape’. But there is still quite a bit of cancellation at low frequencies – hence

the need for some corrective EQ!

18.1.1.1 Practical Dipoles

Another way of thinking of a dipole is by taking a loudspeaker and placing it in

some sort of enclosure, e.g. a duct or finite baffle.

For the ducted loudspeaker this has the effect of isolating the direct radiation

from each side. The length of the duct would be d. The radiation at the end of

the duct would appear as if it were a second source. This would lead to the same

radiated response as before, i.e. a figure of 8.

− +

d

Figure 18.3: Dipole source as loudspeaker in a
duct.

− +

d

Figure 18.4: Dipole source as loudspeaker in a
baffle.

There is another way of achieving this. If we put a loudspeaker it in some finite

size baffle at low frequencies the radiated sound will happily diffracts around the

baffle. In doing so it will travel some additional path length. The exact length of

this path is not as clear, but the same effect happens. We have a phase difference

between two out of phase sources. This gives us a figure of 8 pattern.

So if we put a large driver in a small baffle we don’t get a lot of bass. So it is

looking pretty rubbish for a sub-woofer. But as mentioned before, it is possible

to equalise this problem out. Another problem is that a figure of 8 directivity

isn’t actually very useful. Why would we want to radiate sound out the back of a

loudspeaker, when the audience is in front? Seems quite odd thing to do at the

moment, but we are moving towards something.

18.1.2 High Frequency

Although we are interested primarily in low frequencies right now, it is worth

having a quick look at how high frequencies behave, especially as this whole

dipole concept applies equally to microphones as well (we will get to that later

on in the notes).

To make life a little simpler, lets consider the on axis response (so in other

words when θ = 0) and go back to equation 18.6, before we made the low

frequency approximation,

pT = pf (1− [cos (kd cos θ)− j sin (kd cos θ)]) . (18.9)

Now lets look at how this changes with frequency.

We are only interested in the frequency dependant (directivity) part, so lets

take the magnitude of this term.

|DF | = |1− [cos kd− j sin kd]| =
√

(1− cos kd)
2

+ sin2 kd (18.10)

Now a little bit of algebra. First expanding the squared bracket,

|DF | =
√

1− 2 cos kd+ cos2 kd+ sin2 kd (18.11)

the using the identity cos2 + sin2 = 1,

|DF | =
√

1− 2 cos kd+ 1 =
√

2− 2 cos kd =
√

2(1− cos kd). (18.12)
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Finally we arrive at a frequency dependent directivity factor (although we are

assuming on axis),

|DF | =
√

2
√

1− cos kd. (18.13)

Recall that k = 2π/λ. Substituting this into the above we can see that this

directivity factor will tend to zero whenever the wave length is an integer multiple

of the spacing,

|DF | =
√

2

√
1− cos

2πd

λ
. (18.14)

This makes sense right? By the time the rear radiated sound has reached the

front source, it is 180◦ out of phase, and so cancels completely.

Figure 18.5: On axis dipole response as a func-
tion of d/λ = fd/c.

We can also see that when the ratio is an integer wave length plus a 1/2, we

get a maximum. So we have that for,

d

λ
= 1, 2, · · · (18.15)

and
d

λ
=

1

2
,

3

2
, · · · , n+

1

2
→ |DF | = 2. (18.16)

Plotting this response for all d/λ we get something that looks a lot like a comb

filter.

So have seen that at high frequencies (on axis) we get a comb filtered response

from our dipole source. This arises due to the constructive and destructive inter-

ference from the two sources.

When the frequency is such that the wavelength is equal to the spacing we

get a 360◦ phase difference, but because sources are out of phase with each

another to start with, the phase difference at listener position is only 180◦, and

so we get complete cancellation. This clearly repeats at integer multiples of this

wavelength.

When the freq is such that the 1/2 wavelength is equal to the spacing you

get a path difference that accounts for the 180◦ phase shift, plus the extra 180◦

phase shift due to the two sources being driven out of phase. This means at the

listening position we a phase shift of 360◦, so everything is back in phase and we

get constructive interference. This also repeats at integer multiples of this 1/2

wavelength.

When designing a low frequency loudspeaker we clearly want some sound. So

we are interested in up to perhaps the first peak, i.e. when spacing is equal to

1/2 wavelength. In fact for subwoofers you will usually design them so that the

spacing is equal to a 1/4 wave length of the centre of the operating band.

18.2 Controllable Directivity

The main disadvantage of a dipole source is due to the low frequency roll off arising

from the jkd term in its response. Also, remember that the piston impedance

function has a (ka)2 term in its real part. This means we get lower radiated

power as frequency decreases. The only way to compensate for this is to increase

the surface area, i.e. to overcome impedance function you need a very large

diaphragm. Coupled to that, you need a +6 dB per octave bass boost to overcome

the linear frequency dependence introduced by the dipole source. So it’s a bit of

a trade off. By introducing a second out of phase source, you get an improved
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directionality but as a consequence the radiated power and loudspeaker efficiency

is reduced.

Interestingly, for a microphone it is possible to compensate for this 1/f roll

off by adjusting the mechanical parameters i.e. play with the resonance of the

diaphragm to tune the system. This is clearly preferred to electrical compensations

(we just want to plug in and get flat response).

We have seen that a dipole loudspeaker configuration will give us a figure

of 8 directivity pattern. Although not particular useful by itself, this directivity

is incredibly useful when combined with an omni-directional response as well.

By controlling their relative contributions, we are able to control the directional

response of the loudspeaker.

18.2.1 Cardioid Response

We have looked at the dipole loudspeaker and seen its figure of 8 directivity. This

is interesting, but there are far more useful directivities out there than the figure of

8. In fact, it turns out that by combining the figure of 8, with an omni directional

response, we can create a whole load of useful directivities. But first lets do a

bit of recapping. We’ve got the omni-directional pattern, where a loudspeaker

d

+−

Z−
d
c

−A0

Delay

A0

Figure 18.6: Dipole configuration with a delayed
rear source.

radiates at all angles equally. We have a figure of 8 pattern, where we only get

radiation forwards and backwards.

Another really useful directivity is the so called cardioid pattern. This is where

the sound is mostly directed in one direction. It turns out that we can design

a directivity like this by introducing a delay into the system. In particular for a

cardioid pattern, we set this delay to be equal to the distance between the sources.

Recall the radiated pressure from a dipole source,

pT = pf + pb = pf
(
1− e−jkd cos θ

)
. (18.17)

Introducing a delay of length d is equivalent to multiplying by an additional

complex exponential as so,

pT = pf
(
1− e−jkd cos θe−jkd

)
. (18.18)

Using Euler’s formula we get,

pT = pf (1− [cos (kd cos θ)− j sin (kd cos θ)][cos (kd)− j sin (kd)]) . (18.19)

Now again we consider far field radiation by assuming kd << 1 and taking first

order approximations for the trig terms,

pT = pf (1− [1− jkd cos θ][1− jkd]) , (18.20)
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whilst ignoring any terms that are second order in kd,

pT = pf (1− [1− jkd cos θ − jkd]) . (18.21)

Finally we arrive at,

pT = pf (jkd cos θ + jkd) = pf jkd (1 + cos θ) , (18.22)

an expression similar to what we had before, except there is an extra factor of

+1. This extra +1 term can be though of as introducing an additional monopole

behaviour (albeit one that is frequency dependent). The cos θ then corresponds

to a dipole.

Figure 18.7: Cardioid response

So what does this look like? Shown in figure 18.7 is the resultant response.

By adding a delay that is equivalent to the path length difference between the

two sources get a cardioid (heart shaped) response. So why does this happen?

Let’s consider the backwards radiation first. Our starting point is a dipole,

where the rear source is set 180◦ out of phase with the front source. The difference

in path length between the two (in the backwards direction) introduces a phase

delay ejkd. The additional delay applied to the rear source, e−jkd, effectively

reverses the path length phase delay. As a result it is as if the two sources are

located in the same position. Hence, they interfere destructively and we get no

radiation backwards.

What about the front radiation? The difference in path length between the

front and rear sources (in the forwards direction) introduces a phase delay e−jkd.

Unlike the rear radiation (where the applied delay reverses the path length delay),

in the forward direction the applied delay combines with the path length delay.

Together these avoid the 180◦ phase difference, leaving behind some frontward

radiation. For example, suppose we have a spacing d equal to a 1/4 wavelength.

+−

ejkd

e−jkd

(180◦ out of phase)

+−

e−jkd

e−jkd

(not 180◦ out of phase)

Rear radiation Frontward radiation

+x

Figure 18.8: Front and rear response of cardioid
directivity.

Backwards, the rear source is 90◦ ahead of the front source radiation due to the

path length difference. This cancels the −90◦ phase delay applied to the rear

source. All that’s left is the −180◦ delay due to the inversion of the rear source.

The front and rear sources are out of phase; they cancel completely.

Forwards, the front source is 90◦ ahead of the rear source radiation due to

the path length difference (equivalently, the rear source is −90◦ behind the front

source). This combines with the −90◦ phase delay applied to the rear source

to give a −180◦ phase delay. When combined with the 180◦ delay due to the

inversion of the rear source, the front and rear sources end up completely in phase;

they interfere constructively giving a large boost in the frontward radiation.
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18.2.2 Variable Directivity

We have seen that the cardioid pattern is made up of two parts. One part omni,

one part figure of 8. We got this pattern by considering a rear source delay that

was equal to the source spacing d. Now lets consider what happens if we change

this delay.

Recalling equation 18.22, and introducing dZ to denote the additional delay,

the response of our variable delay dipole source is given by,

PT = Pf (jkd cos θ + jkdZ) . (18.23)

Clearly by setting the delay to dZ = 0 we arrive at the figure of 8 response of a

dipole. By setting dZ = d we arrive back at the cardioid response. You could push

dZ a little further to obtain a sub-cardioid response, but remember we derived

equation 18.23 by assuming kd << 1. this assumption applied also to the delay

dZ . So we cant use this equation for large values of the delay.

In between the figure of 8 and cardioid response we have a whole load of differ-

ent directivity patterns, including the super-cardioid and hyper-cardioid responses

(see for example figure 18.9), all obtainable by simply altering the rear source

delay.

Figure 18.9: Polar response of dipole source with
variable delay. Figure of 8, super cardioid, and
cardioid polar patterns.

So by controlling the delay applied to the rear loudspeaker (when wired anti-

phase), we can alter the contribution of the omni and figure of 8 response terms,

and in turn control the low frequency directivity of our source.

18.2.3 Directivity vs. Frequency

In deriving equation 18.23 we assumed kd << 1. Lets now relax that assumption

and look a little more closely at the issue of directivity vs. frequency. Taking

equation 18.19 (i.e. before we assumed kd << 1),

pT = pf (1− [cos (kd cos θ)− j sin (kd cos θ)][cos (kd)− j sin (kd)]) . (18.24)

but considering only the on axis response (θ = 0) we get,

pT = pf (1− [cos (kd)− j sin (kd)][cos (kd)− j sin (kd)]) , (18.25)

or by substituting k = 2π/λ,

pT = pf

(
1−

[
cos

(
2π
d

λ

)
− j sin

(
2π
d

λ

)]2
)
. (18.26)

We can now have a look at what happens to this equation as we go up in frequency,

or as the wave length λ decreases.

Figure 18.10: On axis frequency response of
dipole source with decreasing wave length.

We are interested in the maximum and minimum values of equation 18.26.

Starting with the minimum it is clear that this is achieved when the squared

bracket term is equal to 1. Since the bracket is squared, this will occur when the

term inside is either ±1. When the argument of cos is an integer multiple of π

the cos term is 1. For this same argument the sin term is 0. So, when λ = 2d

the cos argument equals π. The cos term then equals 1. For an argument of π

the sin term equals 0. The total pressure is therefore 0.

λ = 2d→ 2π
d

λ
= π → cosπ = −1→ PT = 0 (18.27)
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λ = 2d→ 2π
d

λ
= π → j sinπ = 0→ PT = 0 (18.28)

For a maximum we need the sin term to equal 1. This will give us a −j2 = −1

term which will then yield +2 overall. When the cos and sin arguments are π/2

the cos term will be 0, and the sin term will be 1. This is achieved when λ = 4d.

At this frequency the radiated pressure is twice that of the single driver alone.

λ = 4d→ 2π
d

λ
=
π

2
→ cos

π

2
= 0→ PT = 2 (18.29)

λ = 4d→ 2π
d

λ
=
π

2
→ j sin

π

2
= j → PT = 2 (18.30)

As the wave length continues to decrease (with increasing frequency) integer

multiples of the above occur, and we get a repeating comb like pattern in the

frequency response. How this decreasing wave elngth effects the directivity is

shown in figure 18.11. We cycle between cardioid and figure of 8 directivity.

Notice that the maximum output PT = 2 first occurs when λ = 4d, or when

d = λ/4. According to figure 18.11 this corresponds to a cardioid directivity.

Similarly, the minimum output PT = 2 first occurs when λ = 2d, or when

d = λ/2. According to figure 18.11 this corresponds to a figure of 8 directivity,

but facing in the off-axis direction.

The region highlighted in figure 18.10 corresponds to the region in which the

spacing d is less than 1/4 a wavelength. It is only this region that is useful. If

we space the sources too closely together this 1/4 wave length frequency will be

very high. Although that sounds good, as it extends the useful region, it actually

means we get a very small output at low frequencies (the phase delay between

the two drives will be very small, and so almost perfectly out of phase)! This

would require a huge boost at low frequencies to make it work.

Figure 18.11: Polar response of dipole source
with decreasing wave length.

Instead what we want is a large spacing, so that we can get a large output at

low frequencies. Sub-woofers are usually designed such that the is 1/4 wavelength

at the centre of operating region. For example, if we wanted a 50 Hz sub the

wavelength is 6.8m, and so 1/4 wavelength is 1.7 m! (that’s big for a loudspeaker,

but perfectly reasonable in a PA system)

18.2.4 What About Microphones?

Things are looking pretty good for our low frequency directivity. It turns out that

we can build a sub-woofer array that doesn’t have to be that big. At 50 Hz,

1/4 wavelength is 1.7 m. If you are using two speakers this is the distance apart

they would need to be. This is perfectly reasonable in a PA system. With a HiFi

system on the other hand, clearly this spacing needs to be lower.
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So here is the general idea. Feed a spaced pair of (out of phase) sub-woofers

with same signal, one of which is delayed (see figure 18.12). Given the spacing

d, it is easy to work out what the extra delay should be to achieve a cardioid

response. Then you can just reduce the delay to get a more direction front beam,

with the trade off being that you get some rear radiation also.

−−

Input

Delay

d

Figure 18.12: Variable delay sub-woofer.

It turns out that all of this directivity stuff applies equally as well to micro-

phones. With a microphone what you can do is place the diaphragm at one end

of a tube. This way the total response at the diaphragm is the superposition of

the direct sound and a time delayed version (which is 180◦ out of phase since

it is applied to the rear of the diaphragm). The path length through the tube

is equivalent to our rear source delay. It either cancels or combines with path

length around the outside of the tube to cause destructive or constructive inter-

ference on the diaphragm. And just like our controllable source directivity, if we

vary the diaphragm position we alter the corresponding delay, and so change the

microphone directivity.

Another microphone based approach would be to use two separate diaphragms,

delaying the signal from one before adding them together, just like our sub-woofer

directivity. This would also create a controllable microphone directivity pattern. In

fact, with a microphone we have a bit more flexibility in the design, in particular

we have more control over where the resonance of the diaphragm is. With a

loudspeaker we are pretty much stuck with it being very low (because the driver

is quite massive). We will cover microphone directivity in more detail in Part IV

of the notes.



Part IV

Microphone Design



19 Introduction

We have already discussed the idea that microphones and loudspeakers are very

similar. Lets talk about this in a little more detail.

What have these two transducers got in common? They both have diaphragms.

Obviously they are different sizes, but doesn’t change actual transduction mech-

anism. What is the consequence of having a flexible or mobile diaphragm? We

have a resonant system!

What is the key difference? A loudspeaker will produce a volume velocity

proportional to the voltage you supply it, where as a microphone will output a

voltage proportional top the pressure on its diaphragm (at least the first type of

microphone we will look at does.. other microphones types can depend on the

gradient of pressure).

If we measure the radiated pressure from a loudspeaker, and everything is

working correctly, we should get a flat frequency response. This is what we want

from a loudspeaker. But remember, this masks a couple of things. If we were to

supply a loudspeaker with a constant volume velocity we would get a +6 dB rise

in the output. This is due to the radiation efficiency of a piston being greater

at high frequencies. In order to produce a flat frequency response we need the

volume velocity to fall by −6 dB per octave. This is exactly what we do for

a loudspeaker. How did we do it? We stuck the system resonance as low as

possible. Remember, above a resonance, we get a −6 db per octave slope. This

cancels exactly with the radiation efficiency to give us a flat frequency response

above the resonance frequency (below the resonance we get two +6 dB slopes

combining to give a +12 dB per octave slope).

Now what about a microphone? Well for a pressure sensing microphone we

will find that we don’t have this rising +6 dB per octave slope that we got

from the piston impedance function. What we have is a pressure applied over

a surface area. This yields a force that drives the diaphragm. This conversion

from pressure to force does not depend on frequency. What is important for a

microphone however, is the transduction method. I.e. what sort of motion is the

microphone sensing: displacement, velocity or acceleration? This will make a big

difference on how we design our microphone.

19.1 Types of Microphones

There are two stages to a microphones operation. First we have a pressure wave

forcing a diaphragm (acousto-mechanical conversion). Next we have to convert

this mechanical motion into an electrical signal (mechano-electrical conversion).

There are a several different ways we can do this latter part. We can use a

variable capacitance, Faradays law of induction, piezo-electric materials, variable
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resistance, optical, etc. Different types of microphones will use different trans-

duction mechanisms. Lets look at some examples.

Figure 19.1: Watson.

Figure 19.2: Liquid microphone.

19.1.1 Liquid Microphone

Liquid microphones were one of the first developed. The early instruments were

devised and used by Bell–telephone laboratories around 1875. They were made up

of a wire attached to the bottom of a parchment diaphragm. As the diaphragm

was oscillated by the air, the wire was dipped in water. This water was made

conductive by adding a small amount of acid. As the pressure changes caused

diaphragm to move, the wire would have more or less contact with the water,

thereby changing the circuit resistance. The resulting current variations in the

listening device reproduce the original sounds.

According to popular legend, the 1st historic call Bell said ”Mr. Watson, come

here. I want to see you.” Watson later recounted that Bell had spilled battery

acid and had called for him over the phone with these words, but this may have

been in a separate incident.

What sort of motion is this microphone sensitive to? Displacement!

19.1.2 Carbon Capsule

Next up we have the carbon capsule microphone. These were developed a little

later, patented by Emile Berliner in 1877. Interestingly this design was also

invented by Edison and Hughs at the same time and there was a big legal patent

battle between them.

Figure 19.3: Carbon capsule microphone.

The microphone was made up of two electrical contacts separated by a thin

layer of carbon. With one contact attached to a diaphragm, an external pressure

would cause the carbon disk to be compressed, in turn changing its resistance.

Although this design was more robust than liquid-based mic by Bell, it sounded

pretty rubbish. An improved version of this was used were carbon granules were

loosely packed in an enclosed space. Similarly, sound waves cause the diaphragm

to vibrate. As the granules are pushed closer together their resistance decreases.

What sort of motion is this microphone sensitive to? Displacement!

19.1.3 Capacitor Microphone

Next up we have the capacitor microphone. Now this is a design that has stood

the test of time!

The first capacitor microphone was invented in 1917 by Bell Laboratories. It

was initially used as a laboratory sound intensity measurement tool, although it

was quickly adopted by commercial broadcasters in the early 1920s, where there

was a clear need for better microphones.

Figure 19.4: Capacitor microphone.

The condenser microphone is essentially a variable capacitor. A capacitor is

made up of two closely spaced plates biased with a polarising voltage. One of

the plates either is, or has a diaphragm connected to it. When this plate moves

there is a change in the capacitance/charge across the two plates. This induces

a fluctuating voltage across the capacitor terminals.

What sort of motion is this sensitive to? Displacement!
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19.1.4 Moving Coil (Electro-dynamic)

Condenser microphones were employed to a limited extend in the BBC from

1926. However, they had a reputation for being ‘temperamental’ due to their

susceptibility to moisture causing ‘frying noises’. This lead to the development

of dynamic microphones as an alternative.

Figure 19.5: Moving coil microphone.

In a dynamic microphone (i.e. a moving coil microphone) a diaphragm is

connected to conductor (i.e. some copper wire). This conductor was then placed

in a permanent magnetic field. As sound waves vibrated the diaphragm the

conductors movement in the magnetic field induced a voltage across its two ends

(according to Faraday’s law).

Figure 19.6: Moving coil microphone.

The first practical moving coil microphone was built in 1923. It was called

‘The Marconi Skykes’ or ‘magnetophon’.

Electromagnetic microphones were relatively late on the scene. This was pri-

marily because the permanent magnets of the day were very weak and only elec-

tromagnets could create sufficient flux densities. Originally the magnetic field

was created by a large electromagnet consuming around 4A from an 8V battery!

To block out any electromagnetic interference (which the sensitive microphone

was susceptible to) the microphone was usually placed within a copper mesh box

called a Faraday Cage.

What sort of motion is this microphone sensitive to? Velocity!

19.1.5 Moving Iron (Electro-dynamic)

Here is another take on the dynamic microphone, called the moving iron micro-

phone.

Figure 19.7: Moving iron microphone.

In this design the diaphragm is connected to a bit of magnetised soft iron. As

the diaphragm vibrates this piece of iron moves in and out of a gap in a larger

magnet. This alters the magnetic flux that flows through the ‘magnetic circuit’. A

coil wrapped around the magnet detects this change in magnetic flux and induces

a corresponding voltage.

What sort of motion does it detect? Velocity!

19.1.6 Ribbon (Electro-dynamic)

Next up we have the ribbon microphone. This is another type dynamic micro-

phone. Rather than a a coil of wire, a ribbon microphone places a thin ribbon

(i.e. a single turn in the magnetic field) in a permanent magnetic field. This

microphone is believed to have been developed by Harry F. Olson, (responsible

for the line array) by reverse engineering a ribbon loudspeaker.

Figure 19.8: Ribbon microphone.

A thin strip of aluminium foil (the ribbon) is suspended in a magnetic field. As

sound waves vibrate the ribbon in the field an electrical signal is generated. The

ribbon is corrugated like an accordion to reduce resonances across it. Importantly,

both sides of exposed of the ribbon are exposed. For this reason, as we will see

later, it has a figure of 8 type response (like a spaced dipole).

What sort of motion is the ribbon microphone sensitive to? Turns out its

acceleration!
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19.1.7 Fibre Optic

So here is a slightly more modern design, the optical microphone. How does it

work? Light from a laser source travels through an optical fibre to the surface of

a reflective diaphragm. Sound waves cause the diaphragm to vibrate, which in

turn changes the intensity of the light it reflects. The intensity of the reflected

light is then measured and transformed to an audio waveform.

Figure 19.9: Fibre optic microphone.

The advantage of fibre optic microphones is that they do not react to or

influence any electromagnetic or radioactive fields. This makes them idea for

use in areas where conventional microphones are unable to operate, e.g. inside

industrial turbines of MRI machines.

What sort of motion do they sense? Displacement!

19.1.8 Laser

Our final microphone is that of the laser microphone. A laser beamed onto a

surface, which reflects back some portion of the incident light. The motion of

the surface causes a doppler shift in the in the laser.

This doppler shift can be analysed by looking at the interference patterns that

are set up in the standing wave of the laser. From this the motion of surface can

be deduced.

Figure 19.10: Laser microphone.

Any idea what motion this senses? Well doppler shift is all about the velocity

of a moving source, so it is velocity sensitive!

The great thing about laser microphones like this is that they can work over

very long distances. The down side it that they are also very, very expensive.
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Lets start developing a model for the dynamics of microphone diaphragm. Ir-

respective of the transduction mechanism used, we can consider, as a first ap-

proximation, the diaphragm as a mass on a spring (just like our loudspeaker

diaphragm).

By now you should be familiar with the dynamics of a mass spring system. We

have the parameters m, r, k, and f .

As usual we start with Newton’s 2nd law.∑
i

Fi = mẍ (20.1)

Substituting in the damping, spring and external forces we get an equation of

motion,

Fext − kx− rẋ = mẍ→ Fext = mẍ+ kx+ rẋ (20.2)

Next we recall that the applied force is a function of pressure at the surface and

the diaphragm cross-sectional area,

Fext = PSd. (20.3)

If we assume that the spring and damper are connect to something that doesn’t

move, the mass is free to respond to an incoming pressure wave. Just like we did

with the loudspeaker, we can formulate this as an equivalent circuit. Alternatively

we can go through the more mathematical approach.

Assuming the incoming pressure is periodic, the applied force and resulting

motion will also be periodic, Fext = F0e
jωt and x = x0e

jωt. Substituting these

into our equation of motion, and evaluating the derivatives we arrive at,

Fext = −ω2mx+ kx+ jωrx =
(
−ω2m+ k + jωr

)
x. (20.4)

From the above we can determined the displacement response of the diaphragm

(assuming a steady state response, remember there is also a transient part, al-

though we can ignore that here),

x =
Fext

(−ω2m+ k + jωr)
. (20.5)

A microphone that senses displacement would have a frequency response shape

that follows this equation.

Now what a about velocity sensing microphone? Its diaphragm will still behave

as mass spring system, so all we need to do is find the systems velocity response.

We can do this my just differentiating the displacement response. Remember, for

a periodic response,

v = ẋ =
d

dt
x0e

jωt = jωx0e
jωt = jωx. (20.6)
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Differentiation with respect to time has the effect of introducing a factor of jω in

the numerator. Now by differentiating the displacement response derived above,

v = ẋ =
jωFext

(−ω2m+ k + jωr)
. (20.7)

We can then rearrange this into a more convenient form,

v = ẋ =
Fext(

jωm+ k
jω + r

) . (20.8)

A microphone that senses velocity would have a frequency response shape that

follows this equation.

What about the acceleration response? Same idea. Differentiate the velocity

response. This gives us another factor of jω.

a = v̇ = ẍ =
jωFext(

jωm+ k
jω + r

) =
Fext(

m− k
ω2 + r

jω

) (20.9)

A microphone that senses acceleration would have a frequency response shape

that follows this equation.

Another way of deriving the diaphragm dynamics is to formulate an equivalent

circuit, just like we did for our loudspeaker model. We wont consider this approach

any further here, as it is virtually identical to that of a loudspeaker diaphragm,

which we have already covered.

20.0.1 Displacement Sensing Microphones

Suppose we have a displacement sensing microphone. Its frequency response is

shown in figure 20.1. It has a flat region below the resonance, where the mass

term is negligible. This is referred to as the stiffness controlled region. Above the

resonance the mass term dominates, and since it is scaled by a factor of ω2, we

get a −12 dB per octave drop off.

Figure 20.1: Response of displacement sensing
microphone.

From equation 20.5 we can see that in the flat region, the displacement re-

sponse depends only on the stiffness, and is inversely dependent on it,

x =
Fext

(−ω2m+ k + jωr)

ω→0−−−→ F

k
. (20.10)

If our microphone senses displacement, what part of this response would we

want to use? The flat bit. How could we maximise the useable bandwidth?

We make the diaphragm as stiff as possible. This pushes up the resonance,

extending the flat region of the frequency response. This is exactly how condenser

microphones are designed.

20.0.2 Velocity Sensing Microphones

Suppose we have a velocity sensing microphone. Its frequency response is shown

in figure 20.2. Note that the resonant frequency is now centred between +6 and

−6 dB per octave slopes. We call this is a damping controlled response. By

increasing the level damping the resonant peak will broaden.

Figure 20.2: Response of velocity sensing micro-
phone.

Suppose we want to design a velocity sensing microphone, how would we do

this? Clearly the stiffness and mass controlled regions are now out of use, because

of their ±6 dB slopes. What can we do? If we add enough damping, we can
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actually do a pretty good job flatting out the resonant peak. Then we just have

to make sure that it is placed in the centre of the audible range. Some different

levels of damping are shown in figure 20.2.

To achieve a wide enough flat region, we need a Q factor much much lower than

0.707. If it were 0.707 we would actually get quite a peaky sounding microphone

(like an old novelty record). To achieve a flat frequency response we need the

damping to be quite extreme. As a consequence dynamic microphones are usually

less sensitive that condenser microphones, of the order of 8 times less sensitive.

20.0.3 Acceleration Sensing Microphones

Suppose we have a acceleration sensing microphone. Its frequency response is

shown in figure 20.3.

Above the resonance we get a nice flat frequency response. Only the mass

term has any influence in this region. We call it the mass controlled region.

a =
Fext(

m− k
ω2 + r

jω

) ω→∞−−−−→ F

m
(20.11)

Figure 20.3: Response of acceleration sensing
microphone.

At low frequencies the mass and damping terms are very small compared to

stiffness term. This leads to a factor of ω2, which gives us a +12 dB per octave

rise. The system resonance, which occurs when the reactive part disappears

mω − k/ω = 0 is limited by the damping present. The greater the damping the

low the resonance amplitude, and visa versa.

Suppose we want to design a acceleration sensing microphone. We want to

maximise the useable bandwidth by putting the resonant frequency as low possi-

ble. How do we do this? Increase the mass and reduce the stiffness.

20.1 Temporal Response

What about the temporal response of a microphone? Remember, the frequency

response is only part of the picture. Lets consider a displacement sensing micro-

phone, like the capacitor/condenser microphone.

To design a capacitor microphone we have a resonance that we need to push

up to the top of the band. This means we need the diaphragm to be very light and

stiff. Often achieving the high stiffness is done by putting a really thin diaphragm

under tension rather than through spring like stiffness. What about its damping?

One of the most important parameters when designing a microphone is the Q

factor. The Q factor is related to the amount of damping present, and influences

both the time and frequency response of the microphone, see for example figures

20.4 and 20.5 where the frequency and time response are shown for a number of

different Q factors. We could choose a value of Q that will give us the fastest

time response without oscillations, giving the least amount of smearing in time.

To achieve this we would require a critical damping, giving a Q-factor of 0.5. As

a consequence we would get a more narrow pass band in the frequency response,

as in figure 20.4.

Figure 20.4: Frequency response of displacement
sensing microphone for different levels of damp-
ing.

Nevertheless, this is still a better design than a Q factor which is over-damped

(i.e. takes ages to decay). In general it is the frequency response that is considered

more important in microphone design.

Figure 20.5: Time response of displacement
sensing microphone for different levels of damp-
ing.

The difficulty is that the frequency response isn’t that great with Q = 0.5. A

better response would be the Butterworth alignment where we have the maximally
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flat response (Q = 0.707). This gives the microphone a wider frequency range,

at the cost of some small oscillation in the time domain.

In practice we may want a Q a little larger than 0.707, the reason being is that

usually you can get away with a slightly lower resonance. It is quite hard to make

something very stiff and light too.

Reducing the damping a little (raising the Q) has the effect of pushing up

the level at and above the resonance. We can use this to extend the frequency

range a little bit. In fact people often quite like this effect,for example in vocal

recording. It tends to bring a bit of brightness or air to the vocals, which can

help bring it out of the mix.

20.2 Microphone Design Summary

To design a microphone we need to know the transduction method, i.e. what

motion is being sensed (i.e. acceleration, velocity, or displacement). Then it’s a

case of adjusting the diaphragm properties so that over the bandwidth of interest

we get a flat frequency response.

When we did this with a loudspeaker we designed the system so that the

resonance was at the lower end of the frequency response.

Then we end up with this -6dB per octave roll off on the velocity response

which is compensated for by the impedance of a piston which has a + 6dB /

octave behaviour. They cancel out.

The design strategies to achieve a microphone with a broad flat frequency

response depend on whether the transduction method is displacement, velocity,

or acceleration sensitive. The mass, stiffness and damping of the microphone

diaphragm are used control its frequency of resonance. Its position determines

whether the microphone’s mass, stiffness or damping controlled regions are used.

When we did this with a loudspeaker we designed the system so that the

resonance was at the lower end of the frequency response. We ended up with a

−6 dB per octave roll off on the velocity response which was compensated for

by the impedance of a piston which has a +6 dB per octave slope. They cancel

out. When designing a microphone we get a few extra options, depending on the

transduction method being used.

• If we are sensing displacement the resonance is pushed to the top end of, or

above, the audio band. We do this by making the diaphragm and suspension

light weight and very stiff.

• If we are sensing velocity the resonance is placed in the middle of the audio

band. To achieve a useable bandwidth a large amount of damping is applied

to flatten the resonant response.

• If we are sensing acceleration the resonance is pushed to the bottom end of,

or below, the audio band. We do this by making the diaphragm and suspension

heavy and compliant.

It is important to note that the design strategies described above are con-

cerned with omni-directional microphones. Things will change a little if we have

a different polar pattern, as we will see later.



21 Transduction Methods

Now that we have a working model for the dynamics of a microphone diaphragm,

lets consider in a bit more detail the two most common forms of transduction:

electro-dynamic, and capacitive.

21.1 Electro-dynamic

Shown in figure 21.1 is a diagram illustrating the construction of a typical electro-

dynamic microphone. A diaphragm that is fastened to a coil of wire (voice

coil), which is itself situated in a permanent magnetic field, just like a dynamic

loudspeaker. From our loudspeaker work in the previous semester we already

know that the voltage across a conducting wire in a magnetic field is proportional

to its velocity, length and the magnetic flux density,

V = Blu. (21.1)

The velocity of the microphone diaphragm, due to an applied pressure, can be

determined using the simple mass-spring system we just derived,

v =
Fext(

jωm+ k
jω + r

) . (21.2)

Figure 21.1: Construction fo typical dynamic mi-
crophone.

So what happens under operation? Sound first passes through any wind shield

present, and then through an array of small holes in front of the diaphragm. A

wind shield will add some acoustic resistance and mass, whilst the small holes

will act mostly as an acoustic resistance. Next a silk damping screen is connected

behind the diaphragm, separating the rear cavity into two sections. This resistance

dominates, since the diaphragm resistance is negligible in comparison. The total

damping and mass (for grid shield and silk) is expressed as MAS and RAS .

Figure 21.2: Equivalent circuit for mid frequency
operation of a typical dynamic microphone.

The acoustic mass and damping created by the wind shield/grid, along with

the mass and compliance of the diaphragm, controls main resonance of the system

(frequency and damping). If we combine all the damping and mass terms this

is just the same as the single DoF system that we used to model loudspeakers.

An equivalent circuit for the microphone in this mid frequency range is shown in

figure 21.2.

Figure 21.3: Equivalent circuit for low frequency
operation of a typical dynamic microphone.

What goes on behind the diaphragm is a bit more complicated. To compensate

for the 6 dB per octave roll off with decreasing frequency there is a complaint

volume behind the chamber (CAB). A thin air tube is also added, this is connected

to the outside air. The purpose of this tube is two fold. Firstly it is used to prevent

static displacements of the diaphragm due to changes in atmospheric pressure.

Obviously we want our microphone to work whatever the atmospheric pressure,

so we want it to ignore slow changes in pressure, and only ‘listen to’ the acoustic
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fluctuations. Secondly it is used to introduce an acoustic mass and resistance

(MAT and RAT ). The dimensions of tube are chosen so that when combined

with the rear cavity compliance, we get an additional Helmholtz resonance at the

lower end of the response. This is used to provide a little bit of bass boost at

low frequencies, thus extending the useable bandwidth of the microphone. An

equivalent circuit for the microphone in this low frequency range is shown in figure

21.3.

It turns out that at high frequencies there is another Helmholtz resonance,

instead determined by the mass of the driver and the compliance of the small

air chamber just behind the diaphragm (CAF ). This can also be tuned to give

a boost, but at high frequencies, which could add a bit of brightness to vocals.

An equivalent circuit for the microphone in this low frequency range is shown in

figure 21.3.

Figure 21.4: Equivalent circuit for high frequency
operation of a typical dynamic microphone.

Figure 21.5: Frequency response of dynamic mi-
crophone with dual Helmholtz resonance.

All together what do we have we get the frequency response shown in figure

21.5. At low frequencies, due to the back compliant volume with a thin tube

we get a Helmholtz resonance. At high frequencies the mass of the driver and

the small compliant volume behind it give us a second resonance. In the mid

frequency range the response is dominated by the mass spring dynamics of the

diaphragm. By applying a silk screen (and front grid) a very high level of damping

is achieved, and so the main resonance is flattened out into a pass-band region.

These mechanical and acoustic systems can be combined into the equivalent

circuit shown in figure 21.6. There are a number of different ways to improve the

response of a microphone, these are just some examples. In any case, it is just

like with our loudspeaker design, the whole process is a bit of resonance jenga.

Figure 21.6: Combined equivalent circuit for the
operation of a typical dynamic microphone.

21.2 Capacitance

Figure 21.7: Simple diagram of capacitor micro-
phone.

The operation of a capacitor microphone is fundamentally different from a moving

coil/dynamic design. Shown in figure ?? is a simplified diagram of a capacitor

microphone. A bias voltage is applied across a thin sheet of metal (diaphragm)

and a back plate. Together the diaphragm and back plate form a variable capac-

itor. As the diaphragm is displaced by a sound wave, the capacitance changes,

which super imposes a voltage fluctuation onto the bias voltage.

Figure 21.8: Schematic of capacitor microphone.

Figure 21.9: Another schematic of capacitor mi-
crophone.

Shown in figures 21.8 and 21.9 are a couple schematics of a typical capacitor

microphone design. We have a rigid dust cap/protective grid (very important

since the diaphragm is very very delicate). Below this we have the diaphragm,

which is usually a thin metal film, or a metal coated plastic. After a small air
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gap we have the back plate. This back plate must be electrically isolated from

the rest of the capsule, else the diaphragm wont function as a variable capacitor.

Behind the back plate we have a small capillary tube, its purpose being the same

as a dynamic microphone, to prevent static displacements due to atmospheric

pressure changes.

An important requirement of a capacitor microphone is that a pre-amplifier is

located very close to the capsule. This is because any cable attached will have its

own capacitance. This would appear in parallel with the diaphragm capacitance

and so we would get a reduction in the over all impedance and sensitivity of the

microphone, hence increasing its susceptibility to noise. It is for this reason that

all capacitor microphones must have their own preamp, or some buffer nearby.

So what’s the maths like? Well its not very fun. But if we make a few not so

drastic assumptions, we can make life a lot easier for ourselves.

We can model a capacitor microphone using the simple circuit shown in figure

??. A bias voltage is applied across a series resistor and capacitor (the diaphragm),

over which the output voltage is taken. The purpose of the resistor is to generate

a large potential across the capacitor.

The voltage across a capacitor is given by the charge divided by the capaci-

tance,

V =
Q

C
(21.3)

If we think of our diaphragm and back plates as a pair of plates, we can calculate

the capacitance straight forwardly. It is proportional to the surface area, and

inversely proportional to the plate separation,

C =
εS

X
. (21.4)

Taking each quantity and separating them into a static part and dynamic part

we have,

V = V0 + v, I = I0 + i, Q = Q0 + q, X = X0 + x. (21.5)

Now lets consider the voltage across the capacitor (i.e. the diaphragm). It will

have a constant and dynamic part, as will the charge and distance terms,

V0 + v =
Q

C
=
QX

εS
=

(Q0 + q)(X0 + x)

εS
. (21.6)

If we consider the case in which no sound in present, i.e. the dynamic part is 0,

then the bias voltage can be found.

V0 =
Q0X0

εS
(21.7)

Now lets multiply out the brackets in equation 21.6.

V0 + v =
Q0X0

εS
+
Q0x

εS
+
q +X0

εS
+
q + x

εS
. (21.8)

Assuming that the dynamic part is small compared to the constant part, we can

neglect any second order terms. This leads to a linear equation for the dynamic

voltage.

v =
Q0x

εS
+
q +X0

εS
. (21.9)
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Finally, if we can assume that the charge across the plate is constant (i.e. q =

0) we arrive at a nice simple expression for the voltage output of a capacitor

microphone,

v =
Q0x

εS
. (21.10)

An approx. constant charge can be obtained by either:

1. A high DC polarising voltage (order 100V ) applied through a very high impedance

(a resistor of order GΩs), or

2. Embedding charge (at the time of manufacture) in a very high resistivity

(‘electret’) film.

This ensures an essentially constant charge on the microphone, even when its

capacitance changes due to the sound pressure on its diaphragm. When one of

the plates is moved this changes the capacitance and due to the constant charge

leads to an AC-voltage across the plates representing the displacement. The AC

signal is finally separated from the polarising voltage via a series capacitor.

We have all the pieces. We know the dynamic voltage, which depends on the

bias voltage (which we also know), and we know the mechanical behaviour of the

diaphragm (a mass spring system). So lets put it all together. Substituting in

the bias voltage and the diaphragm displacement,

v =
Q0

εS

pS(
jωR− ω2M + 1

CM

) . (21.11)

which after a little bit of rearrangement becomes,

v =
Q0pCM

ε

1

(jωCMR− ω2CMM + 1)
. (21.12)

Finally we re-parametrized this equation by using diaphragm resonance ωc and Q

factor,

v =
Q0pCM

ε

1(
1 + 1

QTS

jω
ωc

+
(
jω
ωc

)2
) . (21.13)

This is our dynamic output voltage.

In the operating regime (assuming a constant current) the microphones sensi-

tivity is given by the term up front,

v

p
=
Q0CM
ε

(21.14)

It depends on the mechanical compliance CM , the charge across the capacitor

Q0, and the constant ε.

So in deriving this equation we neglected some second order terms. These

terms can be thought of as introducing distortion into the signal. These distortions

are generally small so long as the dynamic variables are small relative to the static

ones.

We also assumed that the dynamic part of the charge was negligible. How do

we ensure a constant charge across the microphone diaphragm? Well we have

two options. We can either using a high DC polarising voltage, applied through

a very large impedance, or we can embed the charge at the time of manufacturer

using a very high resistivity film.
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Microphones that use this second approach, where the charge is embedded,

are called electret microphones. Their advantage is that the embedded charge

eliminates the need for a polarizing power supply, by instead using a permanently

charged material. These microphone types normally contain an integrated pream-

plifier, which does require a small amount of power (often incorrectly called po-

larizing power or bias). Downside, these microphones only have a limited life span

as charge decays over about 30-40 years.



22 Velocity Sensing

Up until now we have been focusing on microphones that sense, or measure,

acoustic pressure. But we know that there is more to an acoustic wave than

just pressure, there is also particle velocity (remember, they are related by Euler’s

equation).

Pressure is a scalar quantity that tells us how bunched up, or stretched apart,

the particles of air are. Particle velocity on the other hand tells us how fast, and in

what direction the air particles are moving. Acoustic pressure nd particle velocity

are related by the properties of the medium. Their exact relation depends also

on the type of wave. We are interested in developing microphones that can sense

(or measure) particle velocity, as opposed to pressure.

How do we do this? There a few different ways. We will talk a bit about the

more exotic approaches before we settle on a conventional method.

22.1 Transduction Methods

22.1.1 Laser Doppler Velocimeter

The first exotic approach is based on the doppler shift in the light reflected by

moving particles suspended in the air. It is exotic because it uses lasers... A

schematic of the experimental set up is shown in figure 22.1.

Figure 22.1: Schematic of laser doppler ve-
locimeter microphone setup

Two laser beams of equal intensity are crossed and focused at the point under

investigation. Together these lasers form an ellipsoidal volume consisting dark

and bright fringes due to the interference between the two beams. Positioned

next to the lasers is an optical receiver. This records the scattered light from the

volume. To get some light scattering we have to fill the volume with particles

(tracer). In some cases there may be enough natural particulate in the air. Now

when the fluid moves ( with a given particle velocity) the scattered light from the

particles is Doppler shifted. This Doppler shift is directly related to the motion

of fluid.

Why all the effort? Laser velocimeters are essential non-intrusive (normal

microphone disturb the sound field they are trying to measure!). This makes

them suitable for hostile environments, and very accurate. Another bonus is that

no calibration is required, and we can get a good spatial and temporal resolution

by scanning the two beams.

Downside? Obviously these things aren’t cheap. Also the flow must be seeded

with some particulate if none naturally exist. Also, it’s a single point method, so

we cant measure at multiple points simultaneously.
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22.1.2 Hot Wire Anemometer

Another exotic approach, albeit more affordable, is the hot wire anemometer.

Figure 22.2: Close up image of hot wire
anemometer.

Here is the idea. If you run a current through two very thin wires (see figure

22.2), they will both heat up. As air moves over the wires, they are cooled down.

This change in temperature changes the resistance of the wire and so we can

record the resulting voltage drop. It has two wires, which when subject to a

sound wave, asymmetrically alter their temperature distribution thus resistance.

The upstream sensor is heated by the downstream sensor. This lets us distinguish

between positive and negative velocity direction. The temperature difference of

the two sensors quantifies the particle velocity for a particular axis.

A commercially available hot wire anemometer, called a microflown, is shown

in figure 22.3.

Figure 22.3: Microflown hot wire anemometer.

Since each sensor is made up of two wires, these microphones give us a figure

of 8 directivity pattern. We can use multiple sensors to record particle velocity in

2D and 3D.

Its it worth noting that these things aren’t the worlds best microphone. You get

quite a lot of noise. Their purpose is more for measurement than recording. An

example application might be to measure an acoustic impedance (need pressure

and particle velocity).

22.1.3 Pressure Gradient Microphone

Now its time for a practical approach. Pressure gradient microphones.

Remember, according to Euler’s equation,

du

dx
=

1

ρ

dp

dx
(22.1)

the spatial derivative of pressure is related to the temporal derivative of particle

velocity. So if we can measure the pressure gradient (i.e. its spatial derivative)

then we should get something proportional to particle velocity.

There are two common ways of measuring a pressure gradient. The first is to

expose both sides of a diaphragm to the incident sound, the other is to use two

separate diaphragms altogether. Lets consider the first approach.

Thus far we have been considering microphones that are sensitive to pressure.

A typical example is shown in figure 22.4, where a diaphragm is placed at one

end of a closed tube. The total pressure transduced by this diaphragm is simply

the pressure to its front side,

pT = pf . (22.2)

Notice that there is no frequency or angular dependence to this transduced pres-

sure. This means that we get an omni-directional response (pressure is sensed

equally from all directions).

Figure 22.4: Diaphragm placed at one end of a
closed tube (small opening for pressure equalisa-
tion.

Figure 22.5: Diaphragm placed in center of tube
with rear side exposed.

Now suppose we place the diaphragm in the centre of the tube and expose its

rear side, as in figure 22.5. The movement of the diaphragm will be determined

by the total pressure acting on it. This is now given by the difference between

the front and rear pressures,

pT = pf − pb (22.3)

If the pressure is the same on the front and back, there is no net force and the

diaphragm wont move. If there is difference in the pressure (i.e. a gradient) then

the diaphragm will be displaced.
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Note that we can express the rear pressure Pb in terms of the front pressure

Pf as,

pb = pf +
dp

dx
∆x. (22.4)

This is true only when Pf and Pb are spaced infinitesimally close. It is however

approximately true for small (but not infinitesimal) spacings. Rearranging the

above the pressure gradient if given approximately by,

dp

dx
≈ pb − pf

∆x
. (22.5)

Notice that this is equivalent to,

dp

dx
≈ − pT

∆x
(22.6)

where pT is the total pressure acting on the diaphragm. Substituting this result

into Euler’s equation, and integrating with respect to time, the particle velocity

is given by,

u ≈ −1

ρ

∫
pT
∆x

dt. (22.7)

From the above we can see that the particle velocity is proportional to the total

pressure on the diaphragm.

22.2 Microphone Design

We have seen that a diaphragm placed in a tube, with its rear also exposed, will

be acted on by a total pressure that is proportional to the particle velocity (i.e.

a pressure gradient). Now lets think a little more carefully about our diaphragm

and what exactly these pressures are.

What is the difference between the front and rear pressure? There is clearly a

phase difference due to the extra path length required for sound wave to reach

the rear opening of the tube. It turns out this is exactly the same problem as a

diaphragm in a baffle.

Lets derive the total pressure on the diaphragm. The pressure on the front is

given by,

pf = p0e
j(ωt−k(r+d/2)) (22.8)

where the factor of d/2 accounts for the position of the diaphragm within the

tube. The pressure on the rear is given similarly by,

pb = p0e
j(ωt−k(r+d/2))ejkd cos θ = Pfe

jkd cos θ (22.9)

where the factor d cos θ accounts for the additional path length travelled outside

the tube (this is exactly the same as our dipole loudspeaker configuration). The

total pressure is then given by,

pT = pf − pb = pf
(
1 + ejkd cos θ

)
. (22.10)

Following the same steps as with the dipole loudspeaker (Euler’s formula, and

low frequency assumption kd << 1) we obtain the total pressure,

pT = pf − pb = jkdpf cos θ. (22.11)

It is useful to split this equation into two parts. The first bit contains the frequency

dependent part (jkdPf ) and the second part accounts for the angular dependence

(cos θ).

Figure 22.6: Frequency dependence of total pres-
sure/pressure gradient.

Figure 22.7: Angular dependence of total pres-
sure/pressure gradient.
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The directivity is determined by this cos term. As you might expect this gives

us the so called figure of 8 polar pattern shown in figure 22.7. This means towards

the front and rear you have a large response, whilst at 90 degrees you get nothing.

It is important to remember though, the front and rear are 180 degrees out of

phase with one another.

Perhaps more important is frequency dependent term jkdPf . A consequence

of making a microphone directional, i.e. by sensing pressure gradient, is the

introduction of an upwards sloping frequency response, compared to the constant

response of a pressure sensing microphone. We saw a similar effect with out

dipole loudspeaker.

This upwards sloping response is very interesting, particularly in the context of

transduction. Remember, the transduction mechanism and diaphragm dynamics

are closely related. If we change the diaphragm dynamics (i.e. by making it

directional) we should probably think about what is being transduced.

By making the microphone sensitive to a pressure gradient we have essentially

introduced a 6 dB per octave rise to the frequency response. To achieve a flat

microphone response we will have to alter the diaphragm dynamics to compensate,

i.e. we will have to change where we put the main resonance.

Suppose we have a microphone with flat pressure response, say a condenser

microphone at low frequencies. Its displacement response is given by,

x =
pTS(

jωR− ω2M + 1
CM

) (22.12)

where pT is the total pressure. For a microphone with a closed rear, the total

pressure is simply the pressure on the front of the diaphragm, pT = pf . If we open

up the rear of the microphone, the total pressure becomes that of equation 22.11.

The displacement response then becomes (ignoring the angular dependence),

x =
jkdpfS(

jωR− ω2M + 1
CM

) . (22.13)

Substituting k = ω/c and after some simple manipulations we get,

x =
d

c

pfS

R+ jω
(
ωM + k

ω

) . (22.14)

This equation is nearly identical (except for the factor of d/c) to the velocity

response we derived in equation 20.8. By sensing a pressure gradient the dis-

placement response of our diaphragm no longer follows the expected shape (flat

at low frequencies). It follows the resonant shape of a velocity response (even

though its still displacement). This means that our original design strategy for a

displacement sensing microphone (i.e. pushing the resonance as high as possible)

is no longer appropriate.

What about a velocity sensing microphone? We get a similar effect. The

frequency dependence introduced by a pressure gradient gives a velocity response

that looks like an acceleration response. So our design strategy here also needs

reconsidering.

Lets reconsider our design strategies for pressure gradient microphones.
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22.2.1 Pressure Gradient Condenser Microphone

Lets start with the problem of a condenser microphone. If you remember our

original design strategy to achieve a flat frequency response was to push the

resonant frequency up as high as possible. This gave us a broadband flat response

over the stiffness controlled region. This strategy was based on a total pressure

that had no frequency dependence.

Now suppose we convert the microphone into a directional one by letting some

sound come in through the back. With reference to figure 22.8, we go from having

a nice flat response (blue), to a horrible resonant response (orange). This would

sound pretty terrible, very tinny!

Figure 22.8: Design strategy for pressure gradi-
ent condenser microphone.

The effect of sensing a pressure gradient is akin to rotating the frequency

response plot anticlockwise. Now we no longer have a flat region. How do fix

this problem? What can we do to get a flat frequency response now? We need

to move the resonance down (yellow), and apply lots of damping (purple)!

This is quite an easy fix. To move the resonance down we just have to reduce

the diaphragm stiffness. Then we just need to add a sufficient amount of damping.

How might we do this? You could put a damping layer on the diaphragm (not

good idea due to increased mass). Instead some damping material is usually

placed behind the diaphragm, e.g. a thin plate with lots of holes in it. This adds

friction and resistive losses.

You might expect all this damping to reduce the sensitivity, which it does,

though less than you expect. Since we have reduced the stiffness, the diaphragm

is free to move more, which helps. Nevertheless, you typically find that the self

noise of a directional condenser mic is greater than omnidirectional one.

22.2.2 Pressure Gradient Dynamic Microphone

What about electro-dynamic microphones? Remember, dynamic microphones

transduce velocity. For an omni-directional (i.e. no rear opening, PT = Pf )

our original design strategy to achieve a flat frequency response was to place the

resonant frequency in the middle of the target bandwidth, and apply loads and

loads of damping to flatten out the main resonance.

Figure 22.9: Design strategy for pressure gradi-
ent dynamic microphone.

What happens if we try to sense pressure gradient? We introduce a 6 dB per

octave rise (i.e. we rotate our frequency response a little anti-clockwise). With

reference to figure ??, we go from having a nice flat response (orange), to a quite

od looking response (purple). At low frequencies, where we had +6 dB/Oct we

get +12 dB/Oct. In the middle where it was flat, we get +6dB/Oct. Now, quite

surprisingly, we get a flat upper region. This flat upper region is the part of the

response that we want to try and use. How do we do this?

We need to move the resonant frequency as low as possible, and reduce the

amount of damping applied (yellow). A Q-factor around 0.707 would be sensible.

Perhaps a little larger if you wanted to extend the bass response.

These new characteristics actually play to the strengths of the electro-dynamic

microphone. Their diaphragms tend to be heavy (they have a voice coil attached)

and thus they naturally have a low resonance frequency. It is very difficult to make

a dynamic microphone diaphragm very light, making it hard to get a resonance

in the centre of the audio bandwidth (although not impossible). And then you

have the damp it loads.

Figure 22.10: The almighty SM58.

Where as for a directional microphone (i.e. pressure gradient), you don’t have
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these problems. We want the diaphragm to be heavy. This means we can make

it really robust. Also, we need much less damping. A good example is the SM58

(see figure 22.10). This directional dynamic microphone has been abused for

many years, and generally keeps working!

22.2.3 Pressure Gradient Design Summary

Lets recap. Depending on what you are trying to sense, i.e. pressure or pressure

gradient, and how you transduce it, i.e. through displacement or velocity, the

dynamics of your diaphragm must change. Below are the key design strategies

for omni-directional and pressure gradient microphones are summarized below.

Condenser Microphone (displacement sensing):

• Omni-directional (pT = pf ) - the resonance is pushed to the top end of, or

above, the audio band. We do this by making the diaphragm and suspension

light weight and very stiff.

• Pressure gradient (pT = jkdpf ) - the resonance is placed in the centre of the

audio band, and a large amount of damping is applied.

Dynamic Microphone (velocity sensing):

• Omni-directional (pT = pf ) - the resonance is placed in the centre of the

audio band, and a large amount of damping is applied.

• Pressure gradient (pT = jkdpf ) - the resonance is pushed to the bottom end

of, or below, the audio band. We do this by making the diaphragm and sus-

pension heavy and compliant.

There are quite a range of different considerations when it comes to micro-

phones, especially compared with loudspeaker design where a low frequency res-

onance was always best. One of the key challenges for microphone designers is

to find materials that let you do what you want. For example, condensers didn’t

really become practical until light materials that could be put under a lot of ten-

sion where invented, for example Milar. Early measurement microphones actually

used to stretch very thin aluminium for the diaphragm (these were very easy to

break!).

22.3 Proximity Effect

We have seen that directional microphones differ from omni-directional ones in

terms of directionality (obviously) and frequency response. This is all because

we are sensing a pressure gradient, instead of pressure. Does pressure gradient

sensing do anything else that is different? (Obviously it must, otherwise why

would I ask).

It introduces an effect known as the ‘proximity effect’. Why the proximity

effect? Because its an effect that only occurs when the microphone is in close
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proximity to the source. What is the proximity effect? It translates into a bass

lift as you get closer to the source. Why does this happen? It is all to do with

the fact we have curved wavefronts rather than plane waves. Lets have a look

and see why. Suppose we have an omni-directional source, and located near it

Figure 22.11: Proximity effect.

we have a pressure gradient microphone. As we move away from the source the

radiated pressure falls according to 1/r. This means the pressure on the front

and rear of the diaphragm will be slightly different. This will effect the pressure

gradient forcing the diaphragm. Now what happens if we move really far away?

The change due to 1/r between the front and rear of the diaphragm decreases.

At long distances the radiated pressure doesn’t change much, i.e. for a plane

wave pressure doesn’t decrease with distance. Whereas near to the source, where

we have a curved wave front, it changes a lot. This rapid change in level due to

and we start to see the influence of the 1/r variation. Lets go through the maths

and see that this really does happen.

The pressure due to a plane wave is given by,

pp = Aej(ωt−kr) (22.15)

where A is an arbitrary amplitude coefficient. The pressure to to a spherical wave

is given by,

ps =
A

r
ej(ωt−kr) (22.16)

where a factor of 1/r has been introduced to account for spherical spreading. Now

lets consider how a pressure gradient microphone would behave in the presence

of these two different wave types.

For a pressure gradient microphone the total transducer pressure is given by the

front/rear pressure difference, which itself is proportional to the spatial derivative

of the incoming pressure wave,

pT = pf − pb ≈ −
dp

dr
d. (22.17)

We want to compare the transduced pressure in the presence of plane and spherical

waves, so lets start by taking the derivative of the plane wave,

−dpp
dr

d = − d

dr

(
Aej(ωt−kr)

)
d = jkdAej(ωt−kr). (22.18)



196 microphone and loudspeaker design

Note that the term Aej(ωt−kr) simply corresponds to the pressure on the front

of the diaphragm, Pf , in the presence of a plane wave. So for a plane wave we

have the total transduced pressure,

pTp = jkdpf . (22.19)

Lets now consider a spherical wave. Taking its spatial derivative we have,

−dps
dr

d = − d

dr

[
A

r
ej(ωt−kr)

]
d. (22.20)

To evaluate this derivative we need to use the product rule (fg)′ = f ′g + fg′.

Doing so yields,

−dps
dr

d = −Aej(ωt−kr)
[
− 1

r2
− jk

r

]
d. (22.21)

The factor of −1/r2 comes from the derivative of 1/r, and the factor of −jk/r
from the derivative of e−jkr. Factoring out 1/r gives us a spherical pressure term

outside the bracket,

−dps
dr

d = −A
r
ej(ωt−kr)

[
−1

r
− jk

]
d. (22.22)

Factoring out jk and cancelling the signs finally yields,

−dps
dr

d = jk
A

r
ej(ωt−kr)

[
1

jkr
+ 1

]
d. (22.23)

The pressure term A
r e

j(ωt−kr) simply represents the pressure on the front of the

diaphragm Pf , in the presence of spherical wave. So for a spherical wave we have

the total transduced pressure,

pTs = jkdpf

[
1

jkr
+ 1

]
. (22.24)

Note that the specific value of Pf is not important here, as we are interested

in the transduced pressure for plane and spherical waves, given the same front

pressure.

Now that we have the transduced pressures for plane and spherical waves lets

look at their magnitude ratio,

R =

∣∣∣∣pTspTp

∣∣∣∣ . (22.25)

A value of R = 1 would indicate that the two wave pressures are sensed equally. A

ratio larger than 1 would indicate that a spherical wave is sensed more efficiently

than a plane wave. Substituting in the transduced pressures,

R =

∣∣∣∣∣∣
jkdpf

[
1
jkr + 1

]
d

jkdpf

∣∣∣∣∣∣ =

∣∣∣∣ 1

jkr
+ 1

∣∣∣∣ (22.26)

we arrive at the main results,

R =

√
1 +

1

k2r2
=

√
1 +

c2

ω2r2
. (22.27)

From equation 22.27 it is clear that the spherical to plane wave ratio is greater

than one, i.e. a pressure gradient microphones are more sensitive to spherical

wave fronts.
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At high frequencies or long distances the second term in the square root of

equation 22.27 becomes negligible and the ratio tends to 1,

R
ω,r→∞−−−−−→ 1. (22.28)

But at low frequencies, or very short distances, this term is much greater than

one, and we get a ratio that is approximately inversely proportional to frequency

and distance,

R
ω,r→0−−−−→ c

ωr
. (22.29)

Figure 22.12: Ratio of transduced pressure for
spherical and plane waves.

Shown in figure 22.12 is the exact trend of the proximity effect. At high

frequencies it tends to one. At low frequencies we get a linearly increasing (as

frequency goes down) response. For a given source distance r, we get a rise at

low frequencies. We get −6 dB/Oct boost because of this property. Also, closer

to the microphone we get, the more the lower frequencies are boosted. We can

arbitrary define a cut-off frequency, below which we get a 6 dB per/Oct effect,

and above which we get approx. no benefit,

fc =
c

2πr
(22.30)

This is a common effect on handheld microphones, such as SM58 (see for

example figure 22.13).

Figure 22.13: Utilisation of the proximity effect.

If we know in advance that a microphone will be placed really close to a source,

we can actually account for this proximity effect in the microphone design. If we

know we are going to get a 6 dB per/Oct boost at low frequencies we can use

an electronic EQ to compensate, or perhaps we could design the microphone

diaphragm (and other components) to provide the necessary cut. Consider for

example the dynamic microphone response in figure ??. A pressure sensing dy-

namic microphone will have a frequency response according to the diaphragm

velocity (orange). A large amount of damping is applied to obtain a useable

bandwidth. Suppose the rear of the microphone’s diaphragm is exposed, this will

shift the response shape to that of an acceleration (yellow), with a 12 dB/Oct

slope, followed by a 6 dB/oct slope. If the microphone is to be positioned at

a known distance, the system resonance can be altered such that the 6 dB/Oct

proximity boost, compensates for the 6 dB/oct cut in the diaphragm response

(green). This actually leads to a really useful effect.

Figure 22.14: Dynamic microphone accounting
for the proximity effect.

By compensating for proximity effect to get flat frequency response in the

design, we are ensuring flat frequency response for a certain source distance. If

you can control the distance, like the commentators microphone in figure 22.15

does, then you ensure the commentators voice is flat with the help of the proximity

effect; as we are transducing a curved wavefront we get the 6dB/oct boost with

decreasing frequency.

Figure 22.15: Coles 4104B Lip commentator’s
Noise Cancelling Ribbon Microphone

This means that any plane waves are not boosted by the proximity effect.

Hence, relative to the near source these are attenuated (by up to 30dB at low

frequencies). This is a really good way to reject distance sources, and maximise

the sound of the intended source.

An example of a microphone that uses this technique is the Coles 4104B

Lip Commentator’s Noise Cancelling Ribbon Microphone in figure 22.15. It can

reproduce high quality commentary speech from noisy surroundings, cancelling out

a considerable degree of background noise. Also, its bi directional polar response

allows for one or more commentators to make clear individual commentary close

side by side.
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So far we have considered some aspects of directivity, for example the effect of

a sensing pressure gradient and the figure of 8 polar pattern that arises. We

also looked at the proximity effect. But lets just go back and think about omni-

directional microphones again. An omnidirectional microphone senses pressure

using just one side of the diaphragm. In theory it has no directional components

to it. Reality is a little different.

Our omni-directional microphones have so far been based on the use infinites-

imally small (point-like) diaphragms. In reality however, microphone diaphragms

have some finite size. This finite diaphragm size introduces two effects, both

of which contribute to the non-omni-directionality of a microphone. The first is

related to phase variations over the diaphragm. The second is to do with the

diffraction around/reflection off of the microphone housing. Lets start with the

phase change over the diaphragm.

23.1 Phase Shift

If a sound wave, whose propagation direction is normal towards the microphone,

impinges on a diaphragm all parts of the diaphragm are acted upon by the same

force. I.e. the sound wave is in phase across the length of the diaphragm, as

in figure 23.1 (blue). This will be true for any frequency wave, so long as it is

normal incidence (assuming plane wave propagation).

Now suppose the same wave arrives but from some off-axis angle (red). Now

there is a phase shift across the diaphragm. Different parts of the diaphragm

are being acted on by different phases of the sound wave. Clearly when the

wavelength is long relative to the microphone’s diaphragm, this has less of an

effect.

Figure 23.1: Normal and off-axis wave front over
microphone diaphragm

We already know that a continuous line array has a directivity pattern that is

related to it’s length; a long array has a very narrow beam, while a short array

is more omni directional. It turns out that we get a very similar effect with

microphones. Lets go through the maths and have a look why.

Lets consider the pressure across a diaphragm due to a wave coming in at some

angle θ, as in figure 23.2. Taking the bottom of the diaphragm as the origin we

can express the additional path length δr in terms of the angle θ and the position

up the diaphragm y,

∆r = y sin θ. (23.1)

Substituting this path length difference into the expression for pressure,

p(y) = p0e
j(ωt−k(r+∆r)) = P0e

j(ωt−k(r+y sin θ)) (23.2)
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and separating out the angular dependence we get,

p(y) = p0e
j(ωt−kr)e−jky sin θ. (23.3)

The total pressure sensed by a diaphragm will be the average pressure across the

diaphragm,

pT =
1

d

∫ d

0

p(y)dy = p0e
j(ωt−kr) 1

d

∫ d

0

e−jky sin θdy. (23.4)

We can define a directivity factor D(θ) as the integral of the angular dependent

part across the length of the diaphragm, divided by its length,

D(θ) =
1

d

∫ d

0

e−jky sin θdy. (23.5)

Evaluating this integral over the diaphragm length we get,

D(θ) =
1

d

[
e−jky sin θ

−jk sin θ

]d
0

(23.6)

and then,

D(θ) =
1

d

[(
−e
−jkd sin θ

jk sin θ

)
−
(
− 1

jk sin θ

)]
. (23.7)

Figure 23.2: Geometrical set up for phase shift
directivity

Now lets take the magnitude of this directivity factor. First, we simplify our

top equation a little,

D(θ) =
1− e−jkd sin θ

jkd sin θ
(23.8)

before employing Euler’s formula to replace the complex exponential

D(θ) =
1− cos(kd sin θ) + j sin(kd sin θ)

jkd sin θ
. (23.9)

Now taking the magnitude we end up with,

D(θ) =

√
(1− cos(kd sin θ))

2
+ (sin(kd sin θ))

2

kd sin θ
. (23.10)

Note that the denominator is outside of the square root as it’s a shared term

between the real and imaginary parts, so when its squared we can bring it outside

the square root.

To make life a little easier lets just substitute x = kd sin θ. We can put it back

in later. Now lets expand the i− cosx term.

D(θ) =

√
1− 2 cos(x) + cos2(x) + sin2(x)

x
. (23.11)

Notice that we get a cos2(x) + sin2(x). This is just equal to 1.

D(θ) =

√
2− 2 cos(x)

x
. (23.12)

Now substituting x = kd sin θ back in and factoring out the constant 2,

D(θ) =

√
2(1− cos(kd sin θ))

kd sin θ
(23.13)
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we get to a point where we can use another trig identity; 1−cos(x) = 2 sin2(x/2).

D(θ) =

√
22 sin2(kd sin θ

2 ))

kd sin θ
(23.14)

Now we have the square root of some squares, so we can simplify that, and voila,

D(θ) =
2 sin(kd sin θ

2 ))

kd sin θ
(23.15)

we arrive at our directivity function for a diaphragm due to a phase shift along its

length. This is assuming a 1d diaphragm by the way. Although a 1d diaphragm

might not be very useful in reality, it does a good job telling us whats going on.

Figure 23.3: Directivity response due to phase
shift over diaphragm.

So what does this directivity look like? A few example polar responses are

shown in figure 23.3 for different diaphragm sizes. This directivity due to a phase

change effects all diaphragms. The effect of this is one of beaming; diaphragms

of a finite size are more directional at high frequencies.

This makes sense right? On axis there is no change of phase so this effect

doesn’t happen. Off axis, the response depends on frequency and diaphragm size,

together these dictate the number of phase changes we get over the length of the

diaphragm.

Remember, we are assuming this things moves as a piston. So the pressure

over the surface is averaged to a single forcing term which moves the diaphragm

as a single lump. When there are lots of phase changes the integrated force may

well be zero(!) simply due to the finite size of the diaphragm. In this case there

is no resultant displacement.

23.2 Diffraction

Now that we have covered the first source of directivity, due to phase cancellations

over a diaphragm, we can consider its second source. This second source of

directional behaviour arises due to the fact that the microphone disturbs the

sound field it is trying to measure.

The impedance of a microphone diaphragm is generally high compared to free

space. This means that the presence of a diaphragm changes the sound field (it

introduces reflections). In fact, for microphones to work they have to disturb the

sound field. Something needs to be moved, some energy must be removed from

the wave and converted into an electrical signal.

When a microphone disturbs a sound field there are two processes going on:

reflection, and diffraction. Whilst some of the incident wave is reflected of the

diaphragm, some is diffracted around the diaphragm. The net force on the di-

aphragm is related to the total pressure on its surface. Now we have to consider

the diffracted contribution, as this changes the total pressure on the surface, i.e.

some sound is diffracted around the microphone. But this means that whatever

is behind the microphone also has an effect! So not only the diaphragm, but the

casing also. Turns out that the shape of the microphone casing can be the cause

of some unexpected lumps in the frequency response.

Figure 23.4: Reflection and diffraction around
microphone diaphragm.

The smaller the diaphragm (and microphone) the less the microphone changes

sound field. So why not make microphones really small? Well, the smaller the

diaphragm the poorer the signal to noise ratio, as the force that’s transduced is

effectively reduced.
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So it turns out that there is no such thing as a perfectly omnidirectional

microphone. This would require an infinitely small device. But you can make

them pretty small. The wavelength of sound at 20 kHz is about 17 mm. You

probably want your diaphragm to be an order of 1/8th of that to have no effect

on sound field. But that includes the casing. Clearly there are some serious design

challenges in achieving this.

Now lets think about the extreme limits of diffraction and reflection. At very

very high frequencies, were diffraction is negligible, the total pressure on the

diaphragm is that of the incident plus reflective. We can approximate this as

simply 2 times the incident pressure.

pT = pi + pr
ω→∞
≈ 2Pi (23.16)

At very low frequencies, were the microphone isn’t large enough to cause a sig-

nificant reflection, what was reflected is now diffracted around the microphone.

All we have over the diaphragm is the incident pressure.

pT = pi + pr
ω→0
≈ Pi (23.17)

From these extreme limits it is clear that diffraction has the effect of introducing

a pressure doubling at high frequencies (i.e. a 6 dB boost).

Figure 23.5: Pressure doubling at high frequen-
cies due to reflections.

Lets look at modelling the effect of diffraction around a microphone diaphragm.

For mathematical convenience we will treat our diaphragm as an infinite strip (into

the screen), but with a finite width (d) which is equivalent to the diaphragm width.

The total pressure is given by the incident plus the reflected,

pT = pi + pr. (23.18)

The amount of diffraction around a strip is given by this equation,

pd =
pi sin(kd sin θ)

kd sin θ
(23.19)

Figure 23.6: Incident, reflected and diffracted
pressure on a diaphragm.

We wont derive this equation here, we’ll just take it as gospel. Assuming a

rigid diaphragm, which strictly isn’t true but is a good approximation here, the

reflected pressure is the incident minus the diffracted, i.e. it is what remains to

be reflected after some of the incoming wave may have been diffracted around,

pr = pi − pd. (23.20)

Combining equations 23.18, 23.19 and 23.20 together gives us the total pressure

on the diaphragm including the effect of diffraction.

pT = pi

(
2− pi sin(kd sin θ)

kd sin θ

)
. (23.21)

Noting that sin(x)/x = 1 for small values of x, this equation provides the inter-

polation between our two limit cases of: the incident pressure only, and a pressure

doubling. Clearly it is angle dependent, but taking the on axis response θ = 0

as an example, at high frequencies the since function tends to zero. At very low

frequencies, it tends to one. As expected.

So what effect does this have on a microphones response? Shown in figure

23.7 is the on-axis response for a 5 cm diaphragm. The orange curve represents

our diaphragms displacement response in the absence of diffraction/reflection. In
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blue is the total pressure response including the effect of diffraction/reflection,

but neglecting the mechanical model. In yellow is the dynamic model including

the effect of diffraction/reflection. It is clear that we get a significant boot at

high frequencies.

Figure 23.7: On axis frequency response includ-
ing effect of reflection and diffraction.

This response poses an interesting question; do we want this +6dB boost?

What can we do to make this work better? We can change the resonant frequency

so that the mechanical roll off occurs before this boost. By making the diaphragm

less stiff we can move the resonance down so that it rolls off before we get into

the +6dB boost. So you can account for this boost by controlling the diaphragm

dynamics. This in figure 23.8 is the resulting response. Notice that we get a

much flatter response now. Also notice, that the reflection effect extends our

frequency response slightly.

Figure 23.8: On axis frequency response includ-
ing effect of reflection and diffraction with a re-
duced resonant frequency.

So it should be clear by now that you will never get a perfectly flat response,

especially with large diaphragms. It turns out that many a microphone has been

built, perhaps accidentally, to give a lumpy response due to some of these effects.

These lumps have turned out to be pleasant to the ears so people have kept them.

Now suppose we reduce the stiffness to correct for this high frequency boost,

thus giving us a flat frequency response on axis. What are the consequences

off-axis? Moving off-axis has the effect of pushing up (in frequency) the point

where the 6 dB boost kicks in. Take the extreme limit at 90◦ for example; we get

no reflections, so the response is always 1 (the frequency of the boost has been

pushed all the way up to infinity).

Figure 23.9: Sinc function.

This means that while the response is equalised on axis, the off axis response

is not flat. The high frequencies have been rolled off more than we may desire

(because we are no longer benefiting from the reflection boost). See for example

figure 23.10 which shows the frequency response at 3 angles: 0◦, 70◦ and 90◦.

Figure 23.10: Angular dependence of frequency
response on effect of reflection and diffraction
with a reduced resonant frequency.

Shown in figure 23.11 and 23.12 are some examples of the polar patterns of

two different sized diaphragms. In both cases we can see that as frequency is

increased, the microphone gets more directional. Also, because of the sin(x)/x

function in the diffraction term we get this odd shape at higher frequencies (can

be greater than 6 dB boost due to ripples in sin(x)/x function).

Figure 23.11: Polar pattern of 1 inch diaphragm.

Comparing the 1 inch and 1/4 inch diaphragms, the 1/4 inch microphone has

more diffraction going on with less reflections, hence has more even response

(less reflected pressure means less of a boost). For the large diaphragm the

sound is more likely to be reflected (less diffraction), so the boost occurs at lower

frequencies.

Figure 23.12: Polar pattern of 1/4 inch di-
aphragm.



24 Microphone Characteristics

24.1 Directivity Measures

We have talked a little bit about the unavoidable causes of directivity (phase

changes and diffraction), now lets talk about directivity a little more generally.

So far we have seen two types of directivity. When considering monopole

sources and pressure sensing microphones we had the omni-directional response.

pT = A0e
jωt (24.1)

When considering dipole sources and pressure gradient sensing microphones we

had the figure of 8 response.

pT = A0e
jωtjkd cos θ (24.2)

In fact, when looking at delayed dipole sources we also saw the cardioid response.

pT = A0e
jωtjkd(1 + cos θ) (24.3)

These are just three of an infinite number of possible directivity patterns.

Directivity patterns can be described in terms of their order. High order di-

rectivities have more detail than lower ones. A zeroth order directivity is simply

an omni-directional monopole. A first order directivity, corresponds to a linear

combination of an omni-directional response, with a figure of 8 response, i.e. for

example if you were to combine a pressure sensing component (omni-directional)

to a pressure gradient (figure of 8) sensing component, as in figure 24.1.

Figure 24.1: Examples of first order directivities.

The general form of a first order directivity pattern is given by,

g = (1−B) +B cos θ. (24.4)

It has the constant (pressure sensing) term (1 − B) and the angular dependent

(pressure gradient sensing) B cos θ. The value of B determines which pattern we

get. For example with B = 0, there is no cos term so it is omni-directional. If

B = 1, there is no omni term so it is all cos, i.e. a figure of 8. If we have half of

each B = 0.5 we get the cardioid pattern.

There are loads more of patterns in between these ones. Two common ones are;

B = 0.3 – the sub-cardioid response (slightly directional response) and B = 0.75

- the hyper-cardioid response (very directional response, with that trade off that

you get a small response contribution from behind).

Shown in figure 24.2 is a table with some useful characteristics of different di-

rectivity patterns. One particularly interesting feature is the right angle rejection.

This is a measure of the relative level at 90◦. From figure 24.2 we see that it can
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Figure 24.2: Table of directivity information.

vary from a measly 3dB (sub-cardioid) to 12 dB (hyper-cardioid). This is quite a

large difference in directivity.

Another interesting characteristic is the angle at which the output is zero.

This is the angle where you get a null is the directivity. For cardioid it is directly

behind the microphone (180◦). In a live sound situation you want this microphone

pointing directly away from stage monitors, to prevent feedback. For the super-

cardioid the zero output angle is 126◦. So you would position this microphone

at a slightly different angle to the wedge monitors. The zero for a hyper-cardioid

response is different still, requiring a near horizontal alignment to any monitor

wedges.

The last three characteristics in figure 24.2, the random efficiency RE, direc-

tivity index DI, and distance factor DF, each provide a single value measure of a

microphones directivity, relative to an omni-directional response. We will briefly

discuss each of these below.

24.1.1 Random Efficiency

The voltage output of a microphone is related to the incident pressure P (which

can be angle dependent), weighted by the microphones frequency dependence K

(sensitivity and transduction), and also weighted by the angular dependence of

the microphone itself, g.

v(f, θ) = p(θ)K(f)g(θ) (24.5)

Note that K and g are just amplitude weighting factors, so they are purely real.

Assuming a incident plane wave, the effective intensity is approximately,

I =
|p|2

ρ0c
∝ |v|
ρ0c

(24.6)
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Now remember, power is intensity times area. Using this we can work out the

total acoustic power of the microphone,

W = IA (24.7)

To determine the total acoustical power of a microphone we need to consider

sound coming in from all directions, i.e. we need to integrate the intensity over

the area of a sphere.

W =

∫
IdA (24.8)

We do this by examining an imaginary sphere that surrounds the microphone.

We can make the reasonable assumption that the microphones directivity has

rotational symmetry. Now to work out what gets captured we can work out the

incident power over a series of thin strips around the sphere. Then we add up

(integrate) the power over all strips sphere to get the total power.

Figure 24.3: Integration over a sphere.

The strip wraps around the sphere to form a circle. The radius of each circle

is r sin θ, its circumference is 2π × r sin θ. To think about strip width we move

an infinitesimally small angle away from theta, dθ. The length of the arc, is then

rdθ. Therefore the area of each strip as it is wrapped around the sphere is this

arc length rdθ times the circumference of the strip, i.e. rdθ × 2πr sin θ.

The total incident power is the surface integral of the intensity over the sphere.

This is quite hard to work out. We can instead replace dA with what we worked

out for the infinitesimal area assuming rotational symmetry. Also introducing our

expression for intensity I ∝ |v|/ρ0c, we have a normal integral with respect to

angle θ,

W ∝
∫ π

0

|v|
ρ0c

rdθ × 2πr sin θ =
2πr2K2(f)

ρ0c

∫ π

0

|P (θ)|2g2(θ) sin θdθ. (24.9)

Next we make the assumption of a diffuse field. This means that sound waves

arrive from all directions equally (on average). This gets rid of the pressure angle

dependence,

W ∝ 2πr2|p|2K2(f)

ρ0c

∫ π

0

g2(θ) sin θdθ. (24.10)

Voila, we have an expression that is proportional to the total output power of

the microphone. What will this be for an omni-directional microphone? The

directivity factor g2(θ) = 1, so we get a factor of 2 since
∫ π

0
= sin θdθ = 2.

Now that we have an expression for the output power of a microphone, we can

define the Random Efficiency (RE),

RE =
Wdiffuse,directional

Wdiffuse,omni
. (24.11)

The RE is the ratio of the power output of the microphone in a diffuse field to

the power output of an omni microphone with the same sensitivity (K), in the

same diffuse field.

Substituting in the expression for power we get,

RE =

2πr2|P |2K2(f)
ρ0c

∫ π
0
g2(θ) sin θdθ×

2πr2|P |2K2(f)
ρ0c

∫ π
0

sin θdθ
=

∫ π
0
g2(θ) sin θdθ×∫ π

0
sin θdθ

=

∫ π
0
g2(θ) sin θdθ×

2
.

(24.12)

We are left with a straight forward expression, we just need to integrate the

polar pattern with a sin term. This gives us a number that describes how direc-

tional the microphone is. Essentially, the lower the number the less energy the
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directional microphone grabs from the diffuse field relative to an omni-directional

microphone. So a smaller number gives more directional response.

24.1.2 Directivity Index

The Random Efficiency as derived above is related to another common measure

of directivity, the so called directivity factor.

D =
1

RE
. (24.13)

The directivity factor is effectively the same parameter, though usually taken as

the reciprocal of the random efficiency. The idea being that the bigger the number

the more directional the microphone. If we take the log of this and multiply by

ten we get another measure, the directivity index,

DI = 10 log1 0(D). (24.14)

The directivity index is a simply a logarithmic measure of directivity.

24.1.3 Distance Factor

Another useful parameter is the distance factor. This is a measure of the ‘reach’ of

the microphone. For example, a microphone with a distance factor of 2 means, in

a reverberant environment it can be placed at twice the distance from the source

compared with an omni-directional microphone, to achieve the same direct to

reverberant ratio. For example, you can place a hyper-cardioid microphone twice

as far away from source and get the same(ish) sound as an omni directional

microphone.

Figure 24.4: Distance factors for common first
order directivites.

How do we calculate this? We use the expression for the random efficiency.

Before we cancelled out the distance r, because we were considering the same

distance for both microphones. Now we allow the distance of the directional

and omni microphones to be different: rd is the distance of the source from the

directional mic, and r0 is the distance of the source from the omni microphone.

r2
d

∫ π
0
g2(θ) sin θdθ×

r0

∫ π
0

sin θdθ
(24.15)

The question is then ‘where do we put the directional microphone in relation to

the omni-directional microphone, so that they have the same overall power from

the source?’ This is the same as setting the ratio equal to one, and finding the

ratio of distances,
r2
d

∫ π
0
g2(θ) sin θdθ×

r0

∫ π
0

sin θdθ
= 1. (24.16)

What we end up with is the square root of the reciprocal of the random efficiency,

1 =
r2
d

r2
0

RE → DF =
rd
r0

=
1√
RE

. (24.17)

24.2 Diffuse vs. Free Field

All this directivity talk is hinting towards an important point. If we equalise the

microphone according to the forward direction, we get a great response for free-

field measurements. But when the microphone is in a reverberant environment we
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get a reduced high frequency response, since the off-axis response is attenuated

at high frequencies.

Figure 24.5: Diffuse field measurement, or close
micing.

Whilst in some situations, e.g close micing of an instrument, the on-axis re-

sponse was what’s most important, we often want to measure pressures in more

reverberant fields (for example when measuring absorption coefficients), where

the off-axis response is dominant. If you used a ‘free field’ calibrated microphone

you would loose some high frequency energy. So what’s the solution?

We want a microphone that gives a flat response in a diffuse environment, so

lets equalise its response to achieve exactly this. By doing so we ensure that a

diffuse sound field is measured with a flat frequency response, but of course the

microphone is a little bit more directional in one direction, and so would be very

bright if use to close mic something. The main point is that the microphones are

the same they are just equalised differently. This is why there are different types

of microphone.

• The free field microphone is designed so on axis its response is flat. Hence this

tries to accounts for it’s own presence in the sound field so forward facing is

flat.

• The pressure microphone doesn’t try to equalise out it’s own response. It

accepts that there may be some reflections. This is useful when you don’t

want these equalised out, such as when the microphone is mounted flush to a

wall.

• The random incidence microphone is designed to give a flat response when

averaged over sound arriving from all directions.

All these microphones can be used to measure a free field. The free-field mic would

be pointed towards to the source. The pressure mic, which has a flat response

when there are no reflections, is placed at 90 degrees to the source (although this

does compromise the sensitivity). The diffuse field microphone is usually can be

placed between 70-80 degrees to the field to achieve a flat frequency response.

Figure 24.6: Free-field, boundary and reverber-
ant field measurements.

24.3 Sensitivity

Another important microphone characteristic is its sensitivity. The sensitivity of a

microphone is defined as the open circuit voltage due to a 1 Pa pressure: v/Pa,

mv/Pa, or in dB re 1v/Pa.

When looking at loudspeaker design (actually cross-over design) we saw that in

order for an amplifier to deliver the same voltage whatever the load, it needed to

have a very very low impedance. This means that it functions like an ideal voltage

source. We need to consider a similar thing when we look at the sensitivity of

microphones, to make sure what we measure is dependent only on the microphone.

Figure 24.7: Measurement of microphone sensi-
tivity.

To do this we measure the microphone using a device with a very high impedance.

This ensures that only the microphone influences the measurement. For example,

consider the set up in figure 24.7, a microphone with internal impedance ZM is

coupled to an amplifier with internal impedance ZA. The output voltage is given

by,

vout = ZT i. (24.18)
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The total impedance is that of the amplifier in parallel with the microphone,

ZT =
ZAZM
ZA + ZM

. (24.19)

Multiplying top and bottom by 1/ZA yields,

ZT =
ZM

1 + ZM
ZA

. (24.20)

The above equation quite clearly shows that to measure the properties of the

microphone independently (i.e. without any effect of the amplifier), we need ZA
to be as large as possible,

ZT
asZA→∞←−−−−−− ZM . (24.21)

24.4 Distortion

Another really important characteristic of a microphone that is commonly stated

in specification sheets is that of the Total harmonic Distortion (THD). We

have been assuming our microphone systems are nice and linear. In reality, all

microphones exhibit some amount of non-linearity. What does this mean? Simply

put, if the microphone were subject to an absolute pure tone, the output voltage

would be this pure tone, plus a series of ‘extra tones’. These extra tones (also

called over-tones) arises due to non-linearity in the system. The underlying causes

of non-linearity are complex, and beyond the scope of this model. Some typical

examples include a displacement dependent force factor B(x)L, or a displacement

dependent suspension stiffness k(x).

The total harmonic distortion is a measure that quantifies the non-linearity of

a device (can also be used for loudspeakers). It is the ratio of the rms of all the

overtones except the fundamental, to the rms level of the fundamental. It is often

expressed as a percentage.

THD =

√
v2

2 + v2
3 + v2

4 + · · ·
v1

× 100 (24.22)

The THD can be used to express what the maximum useful sound pressure level

is for a microphone. For example, you may see something like, Max SPL 139 dB

(1 kHz, ¡ 1% THD). This is saying the THD is less than 1% when the SPL is

less than 139 dB. It is interesting to note that the THD is a frequency dependant

quantity. Usually the value at 1 kHz quoted, but you could run a frequency sweep

to get the THD at every frequency.

Another important point; it turns out that the THD is actually not a very

good indicator of the perceptual quality of something. People tend to like odd

harmonics. That is why we don’t use it to assess perceptual levels of distortion.

For this we use criterion such as PEAQ (Perceptual Evaluation of Audio Qual-

ity), PESQ (Perceptual Evaluation of Speech Quality), etc. These have auditory

models built in.

24.5 Noise

Another important consideration in microphone (and amplifier) design is noise.

Microphones do not provide much of an output. We are talking 0.5 mV to

22 mV response to 1 pascal (remember 1 Pa (1 Newton /m2) is +94dB SPL).
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Figure 24.8: Total Harmonic Distortion

Considering that a normal voice level at 1 m is 60-70 dB, this is a very low output.

Its is approx. 20 dB lower than 94 dB, which is a factor of 10. So a microphone

output would likely be in the range of 0.05mV to 2.2 mV. So what do we do?

We use amplifiers to boost the signal.

Amplifiers don’t just boost the signal we want though, they boost everything

that comes with it. I.e. if we have any noise in our system, that also gets

amplified. Another thing to remember, amplifiers introduce their own noise also.

So for microphone design, noise is definitely an issue.

To boost a signal we often use multiple amplifiers. Rather than trying to boost

the signal in one big go, we do it bit by bit. This tends to reduce problems such as

non-linearity. When using staged amplifiers like this, the first amplifier is critical.

Any noise introduced by this amplifier will get multiplied all the way down the

line.

What are the main sources of noise in microphone systems? There are three:

acoustic noise, thermal noise, and shot noise.

Acoustic noise is pretty obvious. This is background noise in the recording

environment that you didn’t intend to record. This sort of noise can be reduced

for example by controlling the directivity of the microphone (perhaps to reduce

sounds coming from behind), or maybe making use of the proximity effect.

24.5.1 Thermal Noise

Thermal noise (also called Johnson-Nyquist noise) is due to the random thermal

movement of electrons inside an electrical conductor. Thermal noise is similar to

Brownian motion. It occurs in any conductors, whether there is a current there

or not. It is present in all electrical circuits and is a function of temperature and

resistance.

Since thermal noise is a stochastic process, there is no deterministic model

(no defined waveform) for its generation. As such we can only look at its power

spectral density (PSD), and other related statistics. The average squared voltage
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level due to thermal noise is given by,

E[v2] = 4KTRB (24.23)

where K is Boltzman’s constant, T = 1.38×10−23 is the temperature (in Kelvin),

R is resistance, and B is the frequency bandwidth of interest. Its RMS level is

then given by, √
E[v2] =

√
4KTRB. (24.24)

In an ideal resistor thermal noise is approx. white (i.e. constant PSD across

all frequencies) and when limited to a finite bandwidth has an approx. Gaussian

amplitude distribution.

The effect of thermal noise can be reduced by lowering the temperature. This

is often done when conducting experiments with very sensitive equipment.

24.5.2 Shot Noise

Shot noise is entirely different to thermal noise, and arising due to the discrete

nature of electric charge causing random fluctuations of the electrical current

(i.e. current is not a continuous flow, it is a sum of discrete pulses in time, each

corresponding to the transfer of an electron through the conductor.) Acoustically,

shot noise sounds quite similar to rain on a tin roof.

Like thermal noise, shot noise is independent of frequency, but unlike thermal

noise, it is independent of temperature. Instead shot noise depends on the level

of current. Its averaged squared level is given by,

E[I2] = 2eIB (24.25)

where e = 1.602× 10−19 is the charge of an electron, I is the current, and B is

the frequency bandwidth of interest.

Shot noise occurs in all electrical components but is mainly generated within

the amplifiers, for instance in the transistor junctions. It is usually orders of

magnitude lower than thermal noise, but in low temperature applications it can

be a problem.



25 Designing for a Directional Response

So far we have talked a little bit about directional microphone responses. In

particular we have seen the omni-directional pressure sensing microphone, and

the figure of 8 pressure gradient sensing microphone. We know that there exists

a whole load of other useful directivity patterns; how can we design a microphone

to achieve one of these other directivity patterns?

25.1 Phase Shift Method

One approach would be to incorporate some sort of phase shift between the

front and rear of a diaphragm. This is essentially what we did with the cardioid

subwoofer design. In a microphone context we could do this using a tube, and

placing the diaphragm at one end. Remember, if you place the diaphragm in the

middle, you get a figure of 8 pattern. Place it at one end and the additional delay

is equivalent to the length of the tube. So we have a phase delay due to angle

(d cos θ), and due to the length of the tube (d).

We wont go through it here, but I expect you to be able to go from from pf

and pb,

pf = p0e
j(ωt−kr) (25.1)

pb = p0e
j(ωt−k(r+d+d cos θ) (25.2)

to the expression for total pressure,

pT = jkdpf (1 + cos θ) (25.3)

The directivity factor you end up with is that of a cardioid pattern. The maths

is exactly the same as the cardioid subwoofer.

For this method to work then we need to a small tube, so that no resonant

behaviour occurs in the tube. The problem is that the smaller the spacing the

smaller the response due to the jkdpf term. So there is a trade off. Main point,

it is difficult to use a tube to design for directivity.

Here is another idea, why don’t we use two diaphragms with an electronic

tune-able delay, like we did with the sub-woofers? We will go through this idea

later. For now we will stick with the most common approach, using acoustic

circuits.

25.2 Acoustic Filtering Network - Helmholtz

Shown in figure 25.2 is a diagram of a typical capacitor microphone. Note that

there is a hole at the rear, this is very important.



212 microphone and loudspeaker design

Figure 25.1: Phase shift design method for di-
rectional microphone response.

Figure 25.2: Diagram of conventional capacitor
microphone design.

The pressure at the front is pf and the pressure at the rear is pb. We can

represent this system as an acoustic circuit.

We have two pressure generators corresponding to pf and pb. We have a

diaphragm (whose dynamics can be represented by a mass-spring-damper system,

which itself can be represented by an LCR series circuit). We have a hole at the

rear which (assuming the plug of air moves as one) we can model as an acoustic

mass/resistance (i.e. an inductor / resistor). We also have a cavity, which we

can model as a compliant volume (i.e. a capacitor), maybe with some losses (i.e.

another resistor).

Figure 25.3: Equivalent circuit for a conventional
capacitor microphone design.

Shown in figure 25.3 is the equivalent circuit. We have a potential divider,

from the front and the back. But there is are two active components (pressure

generators) hidden away. This makes the analysis is a bit more complicated than

a simple potential divider.

Using this equivalent circuit, we are interested in determining the microphones

sensitivity. To do this we have to determine the voltage output given a 1 Pa

input pressure. Remember, the output voltage of a capacitor microphone is

displacement sensitive. Our first step will be to determine the displacement of the

diaphragm. This will mean solving the equivalent circuit for the diaphragm volume

velocity, and then converting to displacement. Now lets derive an expression for

the velocity of the diaphragm.

Using Ohm’s law we can describe the potential drop over the each impedance

in figure 25.3. The potential drop over Z1,

pf − p2 = UZ1. (25.4)

The potential drop over Z3,

pb − p2 = UbZ3. (25.5)

The potential drop over Z2,

p2 = (U + Ub)Z1. (25.6)
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From these three equations we can derive expressions for the front and rear pres-

sures. The front pressure is given by,

pf = UZ1 + p2 = UZ1 + (U + Ub)Z2 (25.7)

which simplifies to,

pf = U(Z1 + Z2) + UbZ2. (25.8)

The rear pressure is given by,

pb = UbZ3 + p2 = UbZ3 + (U + Ub)Z2 (25.9)

which simplifies to,

pb = Ub(Z3 + Z2) + UZ2. (25.10)

We now have a pair of simultaneous equations for the front/rear pressure, and

the diaphragm/vent velocity. Since we are after the diaphragm velocity, lets solve

for it. From equation 25.10 we get the rear vent velocity,

Ub =
pb − UZ2

Z2 + Z3
. (25.11)

Substituting this into equation 25.8,

pf = U(Z1 + Z2) +
pb − UZ2

Z2 + Z3
Z2 (25.12)

and simplifying yields,

pf =
U(Z1Z2 + Z1Z3 + Z2Z3) + pbZ2

Z2 + Z3
. (25.13)

Now we can rearrange to get the diaphragm volume velocity,

U =
(Z2 + Z3)pf − pbZ2

Z1Z2 + Z1Z3 + Z2Z3
(25.14)

Now all we need is a useful expression for pressure at the rear vent. Luckily,

we have done this kind of thing before. We know that the rear pressure will be

related to the front pressure, but delayed by the extra distance the wave has to

travel,

pf = p0e
j(ωt−kr) (25.15)

pb = p0e
j(ωt−k(r+d cos θ) = pfe

−jkd cos θ. (25.16)

At low frequencies (kd << 1) we can simplify the rear pressure to,

pb = pf (1− jkd cos θ). (25.17)

Our diaphragm volume velocity is then given by,

U =
(Z2 + Z3)pf − pf (1− jkd cos θ)Z2

Z1Z2 + Z1Z3 + Z2Z3
. (25.18)

Dividing both sides by the front pressure, and loosing a numerator Z2, yields the

acoustic transfer function of our microphone,

U

pf
=

Z3 + (jkd cos θ)Z2

Z1Z2 + Z1Z3 + Z2Z3
. (25.19)

This transfer function describes the relation between the front pressure, and di-

aphragm volume velocity.
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In deriving equation 25.19 we made no assumptions regarding the values of

the impedance terms Z1, Z2, or Z3. It turns out that by carefully choose these

values, we are able to obtain different types of directivity pattern. Lets consider

the cardioid pattern as an example.

The cardioid pattern is characterised by the directivity factor 1 + cos θ. The

question is then, what choice of Z2 and Z3 will give us a 1+cos θ in the numerator

of our transfer function equation? Suppose, Z3 = jkdZ2, then,

U

pf
=

jkdZ2 + (jkd cos θ)Z2

Z1Z2 + Z1jkdZ2 + Z2jkdZ2
=

jkdZ2(1 + cos θ)

Z1Z2 + Z1jkdZ2 + Z2jkdZ2
. (25.20)

From the above it is clear that to get a cardioid response, we need the rear vent

impedance to equal jkdZ2. How exactly do we achieve this?

Lets think about what Z3 and Z2 actually are. Z3 is the mass and resistance

of the vent,

Z3 = jωMhole +Rhole (25.21)

and Z2 is the cavity compliance,

Z2 =
1

jωC2
. (25.22)

To get a cardioid response we need these to be equal. So lets equate them.

Z3 = jkdZ2 → jωMhole +Rhole = jω
d

c

1

jωC2
(25.23)

Notice that the frequency dependence in the compliance term cancels,

jωMhole +Rhole =
d

c

1

C2
(25.24)

leaving an equation whose right hand side is a constant value. If the right hand

side is constant, then the left hand side should also be constant. This requires

the mass term to be 0,

Z3 = Rhole =
d

c

1

C2
. (25.25)

To get rid of the mass term we need to make the whole quite wide (e.g. a large

opening, with a grid, or some porous material over it to add damping). This

will make the damping the dominant term (remember acoustic mass is inversely

proportional to surface area). The amount of damping required is determined by

equation 25.20. It is related to the front-rear spacing d and the cavity compliance

C2.

Substituting equation 25.25 into our acoustic transfer function yields,

U

pf
=

Rhole(1 + cos θ)

Z1Z2 + Z1Rhole + Z2Rhole
. (25.26)

Also substituting in the cavity impedance,

U

pf
=

Rhole(1 + cos θ)

Z1

(
1

jωC2
+Rhole

)
+ 1

jωC2
Rhole

(25.27)

rearranging slightly,

U

pf
=

jωC2Rhole(1 + cos θ)

Z1 (1 + jωC2Rhole) +Rhole
. (25.28)
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and recalling that Rhole = jkd1/jωC2,

U

pf
=

jkd(1 + cos θ)

Z1 (1 + jkd) +Rhole
. (25.29)

Equation 25.29 represents the acoustic transfer function of our cardioid micro-

phone. How did we get here? We made the rear vent purely resistive, this means

a large opening, with a grid or some porous material over it to add damping.

We can use this exact same method to design microphones with other useful

directivity patterns. The key equation is

U

pf
=

Z3 + jkdZ2 cos θ

Z1Z2 + Z1Z3 + Z2Z3
. (25.30)

The directivity depends entirely on our choice of Z3. Recall the polar equation

for first order directivity,

g = (1−B) +B cos θ. (25.31)

Notice its similarity to the numerator of equation 25.30. The polar equation gives

a cardioid response when by B = 0.5, i.e. when the constant term 1−B and the

angular term B are equal. This is exactly how we obtained a cardioid response

for our microphone, we set Rhole = d/cC2. Lets think how we might design for

other polar patterns.

Suppose the vent damping is given by some factorG times the cavity impedance,

Rhole = G× d/cC2. For the cardioid response we have G = 1. For a figure of 8

response, there should be no damping (as if the rear were completely exposed),

so G = 0. For an omni response there should be no rear contribution, so G =∞.

With reference to the polar equation it is clear that G = (1−B)/B. If B = 0.5

(cardioid) then G = 0.5, if B = 1 (figure of 8) then G = 0, and if B = 0

(cardioid) then G =∞.

Now suppose we want to design for a sub-cardioid response where B = 0.3.

This gives us G = (1− 0.3)/0.3 ≈ 2.3. To get a microphone with this directivity

we set Rhole = 2.3 × d/cC2. Clearly all the other first order polar patterns are

available this way too,

Rhole =
1−B
B

d

c

1

C2
. (25.32)

This is a really neat idea. By designing just the right rear vent such that its

impedance is purely resistive, with just the right value, get any first order direc-

tivity we like. What’s even more clever is that we can extend this idea to develop

microphones with controllable directivities.

25.2.1 Variable Aperture

Shown in figure 25.4 is an early example of this idea, the RCA series 77 from

50s. This is a ribbon microphone. It has a cowl covering the rear side of the

diaphragm. This cowl has a shutter where you can control the size of an aperture

at the rear. This is a similar design to what we just worked through. The acoustic

transfer function is given by the same equation as before,

U

pf
=

Z3 + jkdZ2 cos θ

Z1Z2 + Z1Z3 + Z2Z3
(25.33)
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with the difference that there is no compliant volume. Instead we have a resistive

pipe or labyrinth. So now Z2 is purely resistive rather than compliant,

Z2 = R2. (25.34)

As before, Z3 can have a mass and resistive part,

Z3 = jωM3 +R3. (25.35)

Figure 25.4: RCA 77D – Ribbon Microphone
1957

We can now use the same design approach as before. Lets consider the cardioid

response to start with. A cardioid response is achieved when Z3 = jkdZ2. This

corresponds to,

Z3 = jωM3 +R3 = jω
d

c
R2. (25.36)

So to obtained a cardioid response we need to a) minimise the resistance R3 (no

losses in of rear aperture) and b) set the mass term to,

M3 =
d

c
R2. (25.37)

The acoustic transfer function of this microphone is then given by,

U

pf
=

Z3 + jkdZ2 cos θ

Z1Z2 + Z1Z3 + Z2Z3
=

jkdR2(1 + cos θ)

Z1R2 + Z1jkdR2 + jkdR2
2

(25.38)

which clearly has a cardioid directivity pattern.

Figure 25.5: Diagram and equivalent circuits for
different aperture openings.

The advantage of this variable aperture design is that the aperture can be

varied. As we make the aperture smaller, its mass effect increases. This makes

Z3 the dominant term in the numerator, giving us a more sub-cardioid directivity.

What about if we completely close the aperture? Well then we only sense the

front pressure and we get an omni-directional response. What happens as we

begin to open up the aperture? The mass term decreases, and so the cos θ term

becomes more and more dominant. At some point the aperture is of such a

size that M3 = dR2/c and we get exactly a cardioid response. As we open the

aperture further the mass term tends to zero, and we end up with a figure of 8

directivity. These cases are all shown in figure 25.5. Such flexibility! All controlled

by a variable aperture.

25.2.2 Capsule Attachments

Here is another neat way to alter the directivity of a microphone; move the

diaphragm. This is implemented on the AKG C-1000, very popular microphone.

It’s a really simple idea. We want to move the diaphragm from the end of a

microphone, to some way down a tube, i.e. lengthen one side. For the C-1000

this is achieved using a adapter that is placed over the end of the microphone, as in

figure 25.6. The C-1000 normally operates with a cardioid directivity. Slip on the

adapter and we lengthen the path between the front and rear of the diaphragm.

Think of a microphone diaphragm in tube. In centre of tube we get a figure of

8 response. At one end of tube we get a cardioid response. Moving diaphragm

towards centre of tube by adding short length of tube in front of the diaphragm

will increase the figure of 8 part of the response. So we go from cardioid to hyper-

cardioid. This would be useful if for example you were recording over-heads on a

drum kit, and you wanted to pick up a bit more of the room.
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Figure 25.6: Extension capsule for AKG C-1000.

25.2.3 Sensitivity

Now lets think about the voltage output of a microphone. Why? Because we

are interested in a) its sensitivity and b) its frequency response. In particular lets

consider the capacitor microphone.

We have already seen that the output voltage of a capacitor microphone is

proportional to the diaphragm spacing, bias voltage and the dynamic diaphragm

displacement,

V =
V0

X0
x. (25.39)

Note that the diaphragm displacement is related to its velocity by differentiation,

u =
dx

dt
→ x =

u

jω
(25.40)

and that velocity and volume velocity are related by a factor of surface area,

x =
U

jωS
. (25.41)

Substituting the above intro equation 25.39, and dividing both sides by pressure

yields,
V

pf
=

V0

jωSX0

U

pf
. (25.42)

Now we have just gone through a lot of effort to derive equation 25.29 for the

acoustic transfer function, so lets substitute it in. Considering the cardioid re-

sponse in particular, we have,

V

pf
=

V0

cSX0

d(1 + cos θ)

Z1 (1 + jkd) +Rhole
. (25.43)

Now lets substitute in for the mechanical impedance of the diaphragm (i.e. Z1),

V

pf
=

V0

cSX0

d(1 + cos θ)(
jωM +R+ 1

jωC

)
(1 + jkd) +Rhole

. (25.44)

Assuming low frequencies kd << 1, the above simplifies to,

V

pf
=

V0

cSX0

d(1 + cos θ)(
jωM +R+ 1

jωC

)
+Rhole

. (25.45)
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Equation 25.45 represents the low frequency sensitivity of our capacitor micro-

phone. Now what do we have to do to get a flat frequency response out of this

microphone? The mass term gives us a −6dB slope, and the stiffness a +6dB

slope. To get a flat response we have to use damping control. Basically, damp the

hell out of it. So the mechanical and rear vent damping are the key parameters.
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We have looked at utilising a variable rear opening to control the directivity of a

microphone. When fully closed we got an omni directional response, and when

fully open we got a figure of 8 response. Somewhere in-between we got a cardioid.

It turns out you can achieve the same sort of controllability another way. Instead

of using a variable opening, you can use a second diaphragm. By varying the

voltage contribution of this second diaphragm you can in fact achieve the same

sort of controllability as with the variable opening.

Here is the general idea. By having two diaphragms we will get expressions

for the voltage response for each. These will be functions of their respective bias

voltages. The output of the microphone will be the combined voltage output

of the two diaphragms. By controlling the bias voltages we can control the

magnitude of each contribution. If the bias voltages are the same, we should get

an omni response. If the bias of the rear is that same but inverted, we should

get a figure of 8. If the bias of the rear is 0 we should get a cardioid response.

This makes sense right? By setting the second diaphragm’s bias to 0, it should

simply act as a resonant mass-spring system, just like the rear vent and cavity in

our acoustic filtering network. Now lets go through the maths and see if this all

works...

Figure 26.1: Dual diaphragm microphone design.

Shown in figure 26.1 is a schematic of a dual diaphragm microphone. The two

diaphragms each have their own velocities and are separated by a pair of cavities

with a series of small openings connecting them. These small openings act as

an acoustic mass with some resistance. The cavities clearly act as compliances.

The equivalent circuit for this microphone is in figure 26.2. It is driven by two

pressure sources. These pressure sources drive the diaphragm impedances ZAD1

and ZAD2
. The cavity impedance is then split and separated by the acoustic

mass/resistance of the small openings. Unfortunately, this circuit is quite awkward

Figure 26.2: Equivalent circuit for dual di-
aphragm microphone design.

to work with. We want to try and simplify the central compliance/mass section.

We can do this using what is called a Delta-Star transformation.

Figure 26.3: Delta-star transformation.
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Circuit schematics like those in the top of figure 26.3 are often encountered

in electrical networks. They are however tricky to deal with. As a means of

simplifying electrical networks we can use the Delta-Star transformation. This

lets us convert the tricky top circuit, into the simple bottom circuit.

Listed below are a series of impedance relations between the two circuits:

• Between terminals A and B,

ZC(ZA + ZB)

ZA + ZB + ZC
= Zα + Zβ (26.1)

• Between terminals A and C,

ZB(ZA + ZC)

ZA + ZB + ZC
= Zα + Zγ (26.2)

• Between terminals B and C,

ZA(ZB + ZC)

ZA + ZB + ZC
= Zβ + Zγ (26.3)

We will need to use all three moving forward, but for the sake of time we will

only focus in detail on the top equation.

Equation 26.1 represents the total impedance between terminals A and B in

both circuits. The left hand side corresponds to the upper (delta) circuit, and the

right to the lower (star) circuit. Consider first the delta circuit. From inspection

we can see that the impedance between A and B is that of ZC in parallel with

the remaining two impedances ZB and ZA. These remaining two impedances are

in series with one another and so their combined impedance is just their sum.

All together then, using the product over sum rule, we have the impedance of

ZC multiplied by ZB + ZA, all divided by their sum, ZC + ZB + ZA. This gives

us the left hand side of equation 26.1. From the star circuit we can see that

the impedance between A and B of the transformed circuit is just the series

impedance Zα + Zβ .

For the two circuit schematics to be equivalent they must have the same

impedance across all terminal pairs. And so we have a total of three equations

that need to be satisfied. To transform our equivalent circuit to the simpler ‘star’

form we need to determine the three impedances Zα, Zβ , and Zγ , i.e. solve the

simultaneous equations. This isn’t particularly fun, so ill give you the answers.

Zα =
ZBZC

ZA + ZB + ZC
(26.4)

Zβ =
ZAZC

ZA + ZB + ZC
(26.5)

Zγ =
ZAZB

ZA + ZB + ZC
(26.6)

These are the conversions we need to transform our circuit to the simpler form.

Now lets apply the above to our equivalent circuit.

To make life a little easier for ourselves, let us assume that the mass effect of

the small openings is negligible. Substituting in for our three impedances we get,

Zα =

2R1

jωC2
1

jωC2
+ 1

jωC2
+ 2R1

=

4R1

jωC
4

jωC + 2R1

=
R1

1 + jωCR1

2

(26.7)



dual diaphragm design 221

Zβ =
R1

1 + jωCR1

2

(26.8)

Zγ =

4
−ω2C2

2

1
jωC2

+ 1
jωC2

+ 2R1

=

4
−ω2C2

2

4
jωC + 2R1

=

1
jωC2

1 + jωCR1

2

(26.9)

After applying the delta-star transformation above, the equivalent circuit now

takes the form of figure 26.4.

Figure 26.4: Equivalent circuit for dual di-
aphragm microphone design with delta-star
transformation.

By denoting,

Z1 = ZAD1
+ Zα (26.10)

Z2 = Zγ (26.11)

Z3 = ZAD2
+ Zβ (26.12)

we arrive at an equivalent circuit identical in form to our single diaphragm con-

denser with an acoustic filtering network, as in figure 25.3, except now the rear

volume velocity corresponds to the second diaphragm.

Recalling the acoustic transfer function from equation 25.30,

U

Pf
=

Z3 + jkdZ2 cos θ

Z1Z2 + Z1Z3 + Z2Z3
. (26.13)

If the diaphragms is made sufficiently low, their contribution can be neglected

entirely, and we have that,

Z1 =
R1

1 + jωC2R1

2

(26.14)

Z2 =

1
jωC2

1 + jωC2R1

2

(26.15)

Z3 =
R1

1 + jωC2R1

2

. (26.16)

Now to achieve a cardioid response for the front diaphragm, we need Z3 =

jkdZ2,

Z3 = jkdZ2 →
R1

1 + jωC2R1

2

=

jkd
jωC2

1 + jωC2R1

2

→ R1 =
jkd

jωC2
=

d

cC2
. (26.17)

Using this cardioid design lets consider the low frequency transfer function

where kd << 1. At low frequencies each impedance term as can approximated

as so,

Z1 = Z3

d
cC2

1 + jω
C2

d
cC2

2

=
d
cC2

1 + jkd
2

kd<<1−−−−→ d

cC2
= R1 (26.18)



222 microphone and loudspeaker design

Z2 =

1
jωC2

1 + jω
C2

d
cC2

2

=

1
jωC2

1 + jkd
2

kd<<1−−−−→ 1

jωC2
. (26.19)

Now we can put together our low frequency equivalent circuit for a dual diaphragm

capacitor microphone. This is much simpler than where we started. Note that we

Figure 26.5: Low frequency equivalent circuit for
dual diaphragm microphone design.

have designed this microphone such that the contribution from the rear diaphragm

yields a cardioid response on the front diaphragm. We have not yet considered

the effect of taking the combined output of both diaphragms, nor varying their

bias voltages. This is what will give us a variable directivity.

Remember that the dynamic voltage output from a capacitor microphone can

be given by,
V

pf
=

V0

jωSX0

U

pf
. (26.20)

Substituting in equation 25.30, along with the low frequency impedance terms in

equations 26.18 and 26.19, yields,

V

pf
=

V0

jωSX0

d
cC2

+ jkd
jωC2

cos θ
d
cC2

jωC2
+
(

d
cC2

)2

+
d
cC2

jωC2

=
V0

jωSX0

C2

d
c + 2

jω

(1 + cos θ). (26.21)

After some simply rearranging,

V

pf
=

V0

jωSX0

C2

d
c + 2

jω

(1 + cos θ) =
V0

jωSX0

C2

jkd+ 2
(1 + cos θ) (26.22)

we have the pressure to voltage transfer function, i.e. the microphone sensitivity.

Remember we are considering low frequencies, so we can neglect the jkd in the

denominator. Our low frequency sensitivity is then

V

pf
=

V0

jωSX0

C2

2
(1 + cos θ). (26.23)

Note that it is proportional to the bias voltage. Also note that this bias voltage

is that applied to the front diaphragm, V0 = Vf . The rear diaphragm will have

its own bias voltage.

We have now derived a sensitivity relation that is valid for both the front and

rear diaphragms. To make things a bit clearer lets also define a new constant

term K = C2/2X0S.



dual diaphragm design 223

It is important to remember however that the incident angle for the front and

rear diaphragms will not be the same. The rear diaphragm will be offset by a

factor of π, as illustrated in figure 26.6.

Figure 26.6: Offset angle for rear pressure.
Also remember that the front and rear pressures will not be equal, they will

differ by a term proportional to the time of flight/angle jkd cos θ. However, at

low frequencies, this term becomes negligible and we can say that Pf ≈ Pb.
The front diaphragm sensitivity is,

vf
pf

= VfK(1 + cos θ) (26.24)

and the rear diaphragm sensitivity is,

vb
pb

= VbK(1 + cos(π − θ)) = VbK(1− cos θ). (26.25)

The total output, or the total sensitivity, is the sensitivity corresponding to the

summed output voltages. Adding together our two sensitivities and regrouping

terms accordingly we arrive at,

vT
pf

=
vf + vb
pf

= K [(Vf + Vb) + (Vf − Vb) cos θ] . (26.26)

Now that we have our total output, lets look at what happens as we alter the

bias voltage across the rear diaphragm.

Suppose the two bias voltages are equal, Vb = Vf . In this case the second

term equals 0 and we get that,

vT
pf

= 2KVf . (26.27)

This is an omni directional response. It has no dependence on angle. Now suppose

the two bias voltages are equal and opposite, Vb = −Vf . In this case the first

term is 0 and we get,
vT
pf

= 2KVf cos θ. (26.28)

This is a figure of 8 response. It has a directivity of cos θ. Now what if the rear

bias voltage is equal to 0? Well this is how we designed our microphone to start

with; both terms contribute and we get,

vT
pf

= 2KVf (1 + cos θ). (26.29)

This is a cardioid response. It has a directivity of 1 + cos θ.

So by simply changing the voltage across the rear diaphragm we can control

the directivity. Neat trick ay? Note that you can also achieve other first order

directivity patterns by setting the rear bias voltage to something a little different.



27 Boundary Effects

Suppose we place a microphone some distance d above a surface. What will

we record? We will have direct sound component, but also not so helpfully a

reflection arriving from the surface below.

In general, reflections are bad news. Their difference in path length compared

to the direct sound can cause comb filtering, which is definitely bad news.

Figure 27.1: Reflection of a hard surface.

Hard reflective boundaries tend to act a lot like mirrors, producing specular

reflections (i.e. reflections that leave at the same angle they arrived). To be

honest, most surfaces (apart from fluffy stuff) act as if they are mirrors (perhaps

dirty mirrors?).

There is another interesting way of thinking about reflections. Boundaries

act like mirrors right? Instead of thinking of a microphone and a hard reflective

surface, we can think of two microphones, one being the mirror image of the other

(the hard surface being the mirror). This second microphone is positioned the

same distance form the mirror as its counterpart. Together the combined signal

from both microphones appears identical to that of a single microphone with a

reflective boundary.

It is clear from figure 27.1 that the reflected wave has to travel an extra distance

∆L. Because ∆L is the same for the virtual mic and the real one (same triangles)

it is if it just travels through the wall to another receiver.

So if we can think of the total response as being the sum from both micro-

phones, can we think of these two microphone as a mini array? Sure.

Lets assume plane waves, i.e. the sound originates far way, in this case we

have,

∆L = 2.d sin θ (27.1)

This makes sense right? If sound is coming in from the side, θ = 0, then the wave

hits both microphones at same time (sin 0 = 0). If sound is coming in from front,

θ = 90, then the wave passes one microphone, then there is a path difference of

2d before the next. This works at any angle.

From this and the wave number we can get the phase difference of the reflected

wave,

φ = k2d sin θ. (27.2)

When you have a time delay between signal and a repetition of itself, at a

particular set of frequencies we get 180◦ phase delay, which causes massive can-

cellations. At another set of frequencies they are in phase, giving us constructive

interference! What’s the end result? An effect we call comb filtering, i.e. a series

of peaks and troughs in the frequency response of the microphone.

You can often hear this effect on news programs where the reporter is sat at

desk (hard reflective surface!) You can actually get special tables (holy tables)
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with lots of holes in to prevent reflections. Another good example is if a singer is

using a lyric sheet. The resulting reflections can cause colouration. In this case

the worst place to have a notch is around 1-2 kHz, i.e. a distance of the order of

5-15 cm.

Figure 27.2: Reflection of a hard surface.

With comb filtering you get a null when the delay is half a wavelength. Then

you get a peak when the path delay is the same as the wavelength. This pattern

repeats as you increase frequency. You get nulls at odd integer multiples of half

a wavelength, and peaks at even integer multiples of a wavelength, as in figure

27.2.

So boundaries are clearly a problem. How can we deal with them? There

are two solutions to the problem: 1) Stay away from boundaries – prevent comb

filtering and 2) get very very close to the boundary – push the first null beyond

the frequency range of interest.

Why isn’t comb filtering a problem in the middle of the room? You are still

getting lots of reflections? If delays are long enough, you get lots and lots of

nulls, i.e. a very ‘fast’ oscillation in frequency response, so many in fact that we

have multiple within each of our critical bands so in the end it all averages out.

Our second remedy is to place the microphone very close to the boundary.

In this case the first notch is very high, beyond our frequency range of interest.

Remember, the first notch occurs when wavelength is 2 times the distance. By

mounting microphone pretty much on boundary you don’t get any interference

due to boundary interactions.

There is a another advantage gained by placing a microphone against a bound-

ary? The air pressure at the boundary is doubled. So you get twice as much

output. This gives us a 6dB boost. What happens if we add another boundary

(e.g. put the microphone in a corner between two walls)? We get 4 times the

pressure! That’s a 12dB boost. Now what about a corner between three walls?

18dB.

Figure 27.3: Boundary microphone.

Thing to remember is that this effect is predominantly a low frequency one, i.e.

when the microphone behaves omni-directionally. Also, if the boundary is small

then not all the wave gets reflected at low frequencies and the pressure does not

add up. The boundary layer microphone acts like a low frequency shelving filter.

At high frequencies how ill it change? The polar pattern will get narrower, so we

expect it to be more directional due to finite size of diaphragm.


